a) х^2 + xy - x - ax + a - a = x^2+ xy - x - ax = x( x + y ) - x( 1 + a )
b) x^2 - 3x -x + 3 +3x -5 = x^2 - x - 2
d = 1 + 4*2 = 9
x_1 = (1 - 9) / 2 = -2 / 2 = -1
x_2 = (1 + 3) / 2 = 4 / 2 = 2
a) х^2 + xy - x - ax + a - a = x^2+ xy - x - ax = x( x + y ) - x( 1 + a )
b) x^2 - 3x -x + 3 +3x -5 = x^2 - x - 2
d = 1 + 4*2 = 9
x_1 = (1 - 9) / 2 = -2 / 2 = -1
x_2 = (1 + 3) / 2 = 4 / 2 = 2
y = (x + 13)² * (e^x) - 15
Находим первую производную:
y` = (x + 13)² * (e^x) + (2x + 26) * (e^x) = (x + 13)*(x + 15) * (e^x)
Приравняем её к нулю:
(x + 13)*(x + 15) * (e^x) = 0
x₁ = - 13
x₂ = - 15
e^x > 0
Вычисляем значение функции:
f(-13) = - 15
f(- 15) = - 15 + 4/e¹⁵
fmin = - 15
fmax = - 15 + 4/e¹⁵
Используем достаточное условие экстремума функции для одной переменной.
y`` = (x + 13)² + 2*(2x + 26) * (e^x) + 2*(e^x) = (x² + 30x + 223) * (e^x)
Вычисляем:
y``(-15) = - 2/e¹⁵ < 0, значит эта точка - точка максимума
y``(-13) = 2/у¹³ > 0, значит эта точка - точка минимума