Транспортная сеть страны состоит из \(1000\) дорог, которые соединяют между собой города. Министерство транспорта решило отремонтировать все дороги, распределив между строительными компаниями города так, что каждая компания обязана отремонтировать половины всех дорог, ведущих из закреплённого за компанией города, но при этом никакая компания не должна ремонтировать всю дорогу целиком, чтобы потом сверить качество работ на стыке отремонтированных разными компаниями половин дороги. Какое наименьшее количество строительных компаний можно привлечь к ремонту, чтобы гарантированно выполнить требуемые условия?
Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.
Объяснение
Это самый метод, но зачастую – самый трудоемкий.
Идея нужно в одном из уравнений выразить одну переменную через другие, а затем полученное выражение подставить в остальные уравнения вместо этой переменной.
Затем точно так же выражаем и подставляем другую переменную и т.д., пока не получим уравнение с одной переменной.
После его решения и нахождения одной из переменных - последовательно возвращаемся к ранее выраженным, подставляя найденные значения.ние:
cos²α = 1 - sin²α
cos²α = 1 - 576/625
cos²α = 49/625, cosα= -7/25 (перед дробью знак минус, т.к. α∈(π;3π/2) , а косинус в этом промежутке отрицательный)
2. sin (3π/2 - 2x) = sinx, (3π/2 ; 5π/2)
Применяем формулы приведения, и получаем:
-cos2x = sinx |:(-1)
cos2x = -sinx
cos²x-sin²x = -sinx
cos²x-sin²x+sinx = 0
1 - sin²x - sin²x + sinx = 0
-2sin²x + sinx + 1 =0
Делаем замену: sinx=a
-2a² + a + 1 = 0
D = 9, √D = 3
a1 = 1, a2 = - 1/2
sinx = 1 sinx = -1/2
x = π/2 + 2πn x = (-1)^n arcsin(-1/2) + πn
x=(-1)^n+1 π/6 + πn
Перебираем корни:
n=0 n=1 n=2
x=π/2 - не подходит x=5π/2 - подходит x=9π/2 - не подходит
x=-π/6 - не подходит x=7π/6 - не подходит x=11π/6 - подходит
n=3
x=13π/2 - не подходит
x=19π/6 - не подходит.
Дальше корни будут больше, и не войдут в промежуток. Значит, только 2 корня