Решим задачу на нахождение времени, скорости, расстояния
Дано:
S=30 км
v(течения)=2 км/час
t(мот. лодка) = через 1 ч.
t(встречи)=2 ч.
Найти:
v(лодки)=? км/час
Решение
МАТЕМАТИЧЕСКИЙ
1) Посчитаем, сколько всего времени плыл плот до встречи с моторной лодкой, зная что он отправился из пункта А на 1 час раньше и был ещё в пути 2 часа:
1+2=3 (часа) - плыл плот до встречи с моторной лодкой.
2) Посчитаем сколько км проплыл плот за 3 часа, зная что он проплыл по течению реки, скорость которой равна скорости плота v(теч.)=v (плота)= 2 км/час
S(расстояние)=v(скорость)×t(время)=2×3=6 (км) - проплыл плот до встречи с катером.
2) Вычислим какое расстояние проплыла моторная лодка за 2 часа, зная что плот проплыл из 30 км только 6 км:
30-6=24 (км) - за два часа проплыла моторная лодка.
Пусть х км/час - собственная скорость моторной лодки. Значит, скорость лодки против течения реки составит х-2 км/час. Скорость плота равна скорости течения реки v(плота)=2 км/час.
Моторная лодка была в пути 2 часа и проплыла 2×(х-2) км.
Плот плыл 1 час +2 часа =3 часа и преодолел расстояние 3×2 =6 км.
Расстояние между ними составляло 30 км.
Составим и решим уравнение:
2×(х-2)+6=30
2х-4=30-6
2х-4=24
2х=24+4
2х=28
х=28÷2=14 (км/час) - собственная скорость катера.
ответ: собственная скорость катера равна 14 км/час.
У нас равнобедренная трапеция. Обозначим её АВСД. АВ = СД = 13 см ВС = 8 см АД = 18 см Из верхних вершин В и С опустим перпендикуляры на нижнее основание. Точки пересечения обозначим К и Л Получим посередине прямоугольник КВСЛ , по бокам 2 равных треугольника АВК и СЛД АК = ЛД = (18 - 8) : 2 = 5 (см) По теореме Пифагора из треугольника СЛД определим СЛ СЛ^2 = СД^2 - ЛД^2 = 13^2 - 5^2= 169 - 25 = 144 CЛ = 12 (см) Площадь трапеции = 1/2 СЛ * АД Площадь трапеции = 1/2 * 12 * 18 = 108 (см2) ответ: 108 см2 - площадь трапеции
Объяснение:
Решим задачу на нахождение времени, скорости, расстояния
Дано:
S=30 км
v(течения)=2 км/час
t(мот. лодка) = через 1 ч.
t(встречи)=2 ч.
Найти:
v(лодки)=? км/час
Решение
МАТЕМАТИЧЕСКИЙ
1) Посчитаем, сколько всего времени плыл плот до встречи с моторной лодкой, зная что он отправился из пункта А на 1 час раньше и был ещё в пути 2 часа:
1+2=3 (часа) - плыл плот до встречи с моторной лодкой.
2) Посчитаем сколько км проплыл плот за 3 часа, зная что он проплыл по течению реки, скорость которой равна скорости плота v(теч.)=v (плота)= 2 км/час
S(расстояние)=v(скорость)×t(время)=2×3=6 (км) - проплыл плот до встречи с катером.
2) Вычислим какое расстояние проплыла моторная лодка за 2 часа, зная что плот проплыл из 30 км только 6 км:
30-6=24 (км) - за два часа проплыла моторная лодка.
3) Посчитаем скорость лодки против течения реки:
24÷2=12 (км/час)
4) Значит собственная скорость лодки равна:
v(против течения)=v(собст.) - v(течения)
отсюда
v(собств.)=v(течения)+v(против течения)=2+12=14 (км/час)
ответ: собственная скорость лодки равна 14 км/час
АЛГЕБРАИЧЕСКИЙ
Пусть х км/час - собственная скорость моторной лодки. Значит, скорость лодки против течения реки составит х-2 км/час. Скорость плота равна скорости течения реки v(плота)=2 км/час.
Моторная лодка была в пути 2 часа и проплыла 2×(х-2) км.
Плот плыл 1 час +2 часа =3 часа и преодолел расстояние 3×2 =6 км.
Расстояние между ними составляло 30 км.
Составим и решим уравнение:
2×(х-2)+6=30
2х-4=30-6
2х-4=24
2х=24+4
2х=28
х=28÷2=14 (км/час) - собственная скорость катера.
ответ: собственная скорость катера равна 14 км/час.
АВ = СД = 13 см
ВС = 8 см
АД = 18 см
Из верхних вершин В и С опустим перпендикуляры на нижнее основание. Точки пересечения обозначим К и Л
Получим посередине прямоугольник КВСЛ , по бокам 2 равных треугольника АВК и СЛД
АК = ЛД = (18 - 8) : 2 = 5 (см)
По теореме Пифагора из треугольника СЛД определим СЛ
СЛ^2 = СД^2 - ЛД^2 = 13^2 - 5^2= 169 - 25 = 144
CЛ = 12 (см)
Площадь трапеции = 1/2 СЛ * АД
Площадь трапеции = 1/2 * 12 * 18 = 108 (см2)
ответ: 108 см2 - площадь трапеции