Третьей 1. AB | CD, а MN -секущая. A Найдите р, если а=70°. ма в B С D А) 90° В) 60° C) 100° 2. AB | CD, а MN- секущая. Найдите а, если в=130°. D) 120° E) 110° A ма B В C С N D А) 50° В) 130° C) 65° D) 70° E) 90° нужно
Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
По определению геометрической вероятности, вероятность того, что точка А попадает в квадрат со стороной 1 см, находящийся в квадрате со стороной 2 см равна отношению площади квадрата со стороной 1 см, к площади квадрата со стороной 2 см, т.е. Р=1/4 =0,25.
Искомая вероятность (вероятность того, что точка А не попадает в квадрат со стороной 1 см, находящийся вквадрате со стороной 2 см) - это вероятность противоположного события, т.е.
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше
0,75
Объяснение:
Площадь квадрата со стороной 2 см равна 2²=4 см²
Площадь квадрата со стороной 1 см равна 1²=1 см²
По определению геометрической вероятности, вероятность того, что точка А попадает в квадрат со стороной 1 см, находящийся в квадрате со стороной 2 см равна отношению площади квадрата со стороной 1 см, к площади квадрата со стороной 2 см, т.е. Р=1/4 =0,25.
Искомая вероятность (вероятность того, что точка А не попадает в квадрат со стороной 1 см, находящийся вквадрате со стороной 2 см) - это вероятность противоположного события, т.е.
1-Р=1-0,25=0,75