1) значение функции, если значение аргумента равно 6;
Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=6
у= -2*6+7= -5 при х=6 у= -5
2) значение аргумента, при котором значение функции равно -9;
Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
-9= -2х+7
2х=7+9
2х=16
х=8 у= -9 при х=8
3) проходит ли график функции через точку А(-4;15).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
15= -2*(-4)+7
15=15, проходит.
2. Постройте график функции y = 3x – 2.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у -5 -2 1
Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно 2;
Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=2
у=3*2-2=4 у=4 при х=2
Согласно графика, также при х=2 у=4
2)значение аргумента, при котором значение функции равно -5.
Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
y = 3x – 2
у= -5
-5=3х-2
-3х= -2+5
-3х=3
х= -1 у= -5 при х== -1
Согласно графика, у= -5 при х= -1.
3. Не выполняя построения, найдите координаты точек пересечения графика функции у = 0,5х - 3 с осями координат.
а)график пересекает ось Ох при у=0:
у=0
0=0,5х-3
-0,5х= -3
х= -3/-0,5
х=6
Координаты точки пересечения графиком оси Ох (6: 0)
б)график пересекает ось Оу при х=0:
х=0
у=0-3
у= -3
Координаты точки пересечения графиком оси Оу (0; -3)
4. При каком значении к график функции у = kx- 6 проходит через точку А (-2; 20)?
||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
Объяснение:
1. Функция задана формулой y = -2x + 7.
Определите:
1) значение функции, если значение аргумента равно 6;
Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=6
у= -2*6+7= -5 при х=6 у= -5
2) значение аргумента, при котором значение функции равно -9;
Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
-9= -2х+7
2х=7+9
2х=16
х=8 у= -9 при х=8
3) проходит ли график функции через точку А(-4;15).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
15= -2*(-4)+7
15=15, проходит.
2. Постройте график функции y = 3x – 2.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у -5 -2 1
Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно 2;
Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=2
у=3*2-2=4 у=4 при х=2
Согласно графика, также при х=2 у=4
2)значение аргумента, при котором значение функции равно -5.
Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
y = 3x – 2
у= -5
-5=3х-2
-3х= -2+5
-3х=3
х= -1 у= -5 при х== -1
Согласно графика, у= -5 при х= -1.
3. Не выполняя построения, найдите координаты точек пересечения графика функции у = 0,5х - 3 с осями координат.
а)график пересекает ось Ох при у=0:
у=0
0=0,5х-3
-0,5х= -3
х= -3/-0,5
х=6
Координаты точки пересечения графиком оси Ох (6: 0)
б)график пересекает ось Оу при х=0:
х=0
у=0-3
у= -3
Координаты точки пересечения графиком оси Оу (0; -3)
4. При каком значении к график функции у = kx- 6 проходит через точку А (-2; 20)?
х= -2
у=20
20=k*(-2)-6
20= -2k-6
2k= -6-20
2k=-26
k= -13
Уравнение: у= -13х-6
5. Постройте график функции:
y (-2х, если х 2, -4, если х > 2.
Неясное задание.
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x {2x-2>0
{2^x+x-2>x-2^x {2*2^x-2>0
{2^x+x-2>-2^x+x+2 {2*2^x-4>0
{2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1
{2^x>1 {x>0
{2^x>2 {x>1
{x>0 {x>0
Решением неравенства является промежуток (1; + беск.)