В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

Три числа прогрессию. если уменьшить третье число на 4,то соответствующие числа составляютарифметическую прогрессию. но если из второго и третьего членов полученной арифмитической прогресии вычесть 1 ,то вновь получим
прогрессию. надо найти эти нужно

Показать ответ
Ответ:
katetolstoshev2
katetolstoshev2
24.05.2020 02:06

Пусть x, y и z - те самые три числа. они составляют геом.прогр., т.е. y/x = z/y. После того, как третье число уменьшили на 4, они стали составлять арифм.прогр., т.е. y-x = (z-4)-y. После того, как второе и третье уменьшили на 1, они снова стали членами геом.прогр., т.е. (y-1)/x = (z-5)/(y-1). ПОлучаем систему из трёх уравнений с тремя неизвестными:

\\\begin{cases}\frac yx=\frac zy\\y-x=z-4-y\\\frac{y-1}x=\frac{z-5}{y-1}\end{cases}\Rightarrow\begin{cases}z=\frac{y^2}x\\y-x=\frac{y^2}x-4-y\\\frac{y-1}x=\frac{\frac{y^2}x-5}{y-1}\end{cases}\\3:\\\frac{y-1}x=\frac{\frac{y^2}x-5}{y-1}\\(y-1)^2=x\left(\frac{y^2}{x}-5\right)\\y^2-2y+1=y^2-5x\\5x=y^2-y^2+2y-1\\x=\frac15(2y-1)\\2:\\y-x=\frac{y^2}x-4-y\\y-\frac15(2y-1)=\frac{y^2}{\frac15(2y-1)}-4-y\\y-\frac25y+\frac15+4+y=\frac{5y^2}{2y-1}\\\left(\frac85y+\frac{21}{5}\right)(2y-1)={5y^2}\\\frac{16}{5}y^2+\frac{34}{5}y-\frac{21}{5}=5y^2\\16y^2+34y-21=25y^2\\9y^2-34y+21=0\\D=1156-756=400\\y_1=3\\y_2=-\frac79\leftarrow HE\quad nogx.\\\begin{cases}z=9\\y=3\\x=1\end{cases}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота