Три выпускника Алекс, Валера и Дима собрались купить сборники для подготовки к ЕГЭ и ручки, которые стоят по 3 рубля каждая. Алекс купил 2 сборника и 4 ручки, Валера — один сборник и 6 ручек, Дима — тоже один сборник и 3 ручки. Оказалось, что суммы, которые уплатили Алекс, Валера и Дима, образуют геометрическую прогрессию. Сколько рублей стоит один сборник? Задача на выбор правильного ответа (см. фото).
1а) Каждая монета может упасть либо орлом (О) либо решкой (Р), то есть две возможности.Монет всего 3.Тогда число возможных событий для 3-х монет равно 2^3=8.Вот варианты: (РРР) (РРО) (РОР) (ОРР) (ООР) (ОРО) (РОО) (ООО) Два раза орёл и один раз решка выпадает в трёх случаях (ООР) (ОРО) (РОО). Вероятность равна 3/8. 1б) Если монету бросают дважды, то возможны случаи (ОО) (ОР) (РО) (РР) Вероятность ХОТЯ бы один раз выпасть орлу равна 3/4. 2) Двойка выпадает с вероятностью 1/6 и пятёрка выпадает с вероятностью 1/6 . Вероятность того, что выпадет или 2 или 5 равна 1/6+1/6=2/6=1/3 б)Чисел, меньших 3, на кубике всего два.Чисел,не больших 3 (меньше или равно 3),на кубике всего 3.Вероятность события равна 2/6*3/6=6/36=1/6
(РРР) (РРО) (РОР) (ОРР) (ООР) (ОРО) (РОО) (ООО)
Два раза орёл и один раз решка выпадает в трёх случаях (ООР) (ОРО) (РОО).
Вероятность равна 3/8.
1б) Если монету бросают дважды, то возможны случаи
(ОО) (ОР) (РО) (РР)
Вероятность ХОТЯ бы один раз выпасть орлу равна 3/4.
2) Двойка выпадает с вероятностью 1/6 и пятёрка выпадает с вероятностью 1/6 .
Вероятность того, что выпадет или 2 или 5 равна 1/6+1/6=2/6=1/3
б)Чисел, меньших 3, на кубике всего два.Чисел,не больших 3 (меньше или равно 3),на кубике всего 3.Вероятность события равна
2/6*3/6=6/36=1/6
f(x)=−x
2
−4x+6
Так как старший коэффициент а=-1 , то ветви параболы направлены вниз . Вершина в точке (-2;10) . Проходит через точки (-1;9) , (-3;9) , (-4;6) .
ООФ: x\in (-\infty ;+\infty )x∈(−∞;+∞) .
Мн. значений функции : y\in (-\infty ;10\ ]y∈(−∞;10 ] .
Точка пересечения с осью ОУ: (0;6) .
Точки пересечения с осью ОХ:
-x^2-4x+6=0\ \ ,\ \ D/4=4+6=10\ \ ,\ \ x_{1,2}=-2\pm \sqrt{10}−x
2
−4x+6=0 , D/4=4+6=10 , x
1,2
=−2±
10
Интервалы знакопостоянства: y>0 при x\in (-2-\sqrt{10}\ ;\ -2+\sqrt{10}\, )x∈(−2−
10
; −2+
10
) ,
y<0 при x\in (-\infty ;-2-\sqrt{10}\ )\cup (-2+\sqrt{10}\ ;+\infty )x∈(−∞;−2−
10
)∪(−2+
10
;+∞) .
Функция возрастает при x\in (-\infty \ ;-2\ ]x∈(−∞ ;−2 ] и убывает при x\in [-2\, ;+\infty )x∈[−2;+∞) .
Точка максимума (-2 ;10 ) .
Ось симметрии - прямая х= -2 .
Наибольшее значение функции у=10 .