Функция возрастает если ее производная больше нуля. а если производная меньше нуля, то функция убывает у'=3x²-2x-1 3x²-2x-1=0 D=4+12=16 x1,2=(2+-4)/6 x1=1 x2=-(1/3) (рисуем параболу на оси X) y'>0 при x∈(-∞;-(1/3)|∪|1;+∞) y'<0 при x∈|-1/3;1| точки экстремума это минимальные и максимальные значения точки в некоторой окрестности. необходимое условие y'=0 при x=-(1/3); x=1 достаточное условие это то, что при переходе через эту точку функция меняет знак. Если подставлять значения x можно заметить,что x=-(1/3) это максимум, а x=1 это минимум. Будут вопросы спрашивай)
Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
у'=3x²-2x-1
3x²-2x-1=0
D=4+12=16
x1,2=(2+-4)/6
x1=1
x2=-(1/3)
(рисуем параболу на оси X)
y'>0 при x∈(-∞;-(1/3)|∪|1;+∞)
y'<0 при x∈|-1/3;1|
точки экстремума это минимальные и максимальные значения точки в некоторой окрестности.
необходимое условие y'=0
при x=-(1/3); x=1
достаточное условие это то, что при переходе через эту точку функция меняет знак.
Если подставлять значения x можно заметить,что x=-(1/3) это максимум, а x=1 это минимум.
Будут вопросы спрашивай)
Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3.
Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π.
Это в том случае, если косинус х.( без скобок).