Выражения такого типа, когда в знаменателе сумма или разность числа и числа под корнем, избавляются от иррациональности простым методом. Вспоминаем формулу сокращенного умножения, разность квадратов:
. В нашем примере в знаменателе сумма, то есть из формулы. Нам нужно найти и умножить на это дробь, чтобы потом получилось , а , получится просто число, таким образом избавимся от корня в знаменателе. В нашем случае — это , — это . Соответственно, — это .
Важно отметить, что нужно умножить наше выражение не просто на , а на , потому что , а при умножении на 1 значение выражения не измениться. Если умножить просто на значение выражения поменяется.
Вот, собственно, и всё правило.
Ещё, после второго действия, второго =, была использована формула сокращённого умножения — разность кубов:
2) ( 3x + 3y) - bx - by = 3(x + y) - b(x + y) = (x+y)(3 - b)
3) (4n - 4) + ( c - nc) = 4( n - 1) + c( 1 - n) = (4 - c)(n - 1)
4) ( x⁷ + x³) - 4x⁴ - 4 = x³(x⁴ + 1) - 4( x⁴ + 1) = (x⁴+1)( x³ - 4)
5) (6mn - 3m) + ( 2n - 1) = 3m( 2n - 1) + ( 2n - 1)=(2n - 1)(3m + 1)
6) (4a⁴ - 8a) +(10y - 5ya³) = 4a(a³ - 2) + 5y(2 - a³) = (4a - 5y)(a³ - 2)
7) a²b² - a + ab² - 1 = (a²b² + ab²) - (a + 1) = ab²(a + 1) - (a+1)=(a+1)(ab² - 1)
8) (xa - xb²) + (zb² - za) - ya + yb² = x(a-b²)+z(b² -a) - y(a -b²)=(x - z - y)(a - b²)
Пояснение:
Выражения такого типа, когда в знаменателе сумма или разность числа и числа под корнем, избавляются от иррациональности простым методом. Вспоминаем формулу сокращенного умножения, разность квадратов:
. В нашем примере в знаменателе сумма, то есть из формулы. Нам нужно найти и умножить на это дробь, чтобы потом получилось , а , получится просто число, таким образом избавимся от корня в знаменателе. В нашем случае — это , — это . Соответственно, — это .
Важно отметить, что нужно умножить наше выражение не просто на , а на , потому что , а при умножении на 1 значение выражения не измениться. Если умножить просто на значение выражения поменяется.
Вот, собственно, и всё правило.
Ещё, после второго действия, второго =, была использована формула сокращённого умножения — разность кубов:
. У нас , . И получается
.