выделением неполного квадрата): y=x²-4x+9 Выделяем неполный квадрат: y=x²-4x+9=(х²-4х+4)-4+9=(х-2)²+5 Далее рассуждаем так: (х-2)²≥0 при любых х∈(-∞;+∞) и 5 > 0. Следовательно, (х-2)²+5 > 0 Значит, у=x²-4x+9 > 0 Что и требовалось доказать
основан на геометрических представления): Докажем, что х²-4х+9>0 1)Находим дискриминант квадратичной функции: D=(-4)²-4*1*9=16-36=-20 <0 => нет точек пересечения с осью Ох 2)Графиком функции у=х²-4х+9 является парабола, ветви которой направлены вверх, т.к. а=1 > 0 Следовательно, вся парабола расположена выше оси Ох Это означает, что данная функция принимает только положительные значения. Что и требовалось доказать.
2) (x-y)(2x-3y)-(3x-y)(2x+y)=2x^2-3ху-2ху+3у^2 - (6х^2 +3ху -2ху -у^2) = 2x^2-3ху-2ху+3у^2- 6х^2 -3ху + 2ху +у^2 = -4x^2 -6xy +4y^2
Можно упростить дальше по формуле разности квадратов: (4y^2-4x^2) -6xy = 4(y-x)(y+x) -6xy
3) Объединяем в квадрат суммы и разность квадратов:
(2a+3)(2a+3)-(2a+1)(2a-1)=(2a+3)^2 - (4a^2-1)=2a^2 + 12a +9 -4a^2 +1 = -2a^2 +12a +10
Ещё можно 2 вынести за скобку : 2(-a^2 +6a +5)
4) (3c-d)(d+3c)+(4c-d)(c-4d)=3cd +9c^2 -d^2 -3cd + 4c^2 -16cd -cd +4d^2 = 13c^2 -17cd +3d^2
y=x²-4x+9
Выделяем неполный квадрат:
y=x²-4x+9=(х²-4х+4)-4+9=(х-2)²+5
Далее рассуждаем так:
(х-2)²≥0 при любых х∈(-∞;+∞) и 5 > 0. Следовательно, (х-2)²+5 > 0
Значит, у=x²-4x+9 > 0
Что и требовалось доказать
основан на геометрических представления):
Докажем, что х²-4х+9>0
1)Находим дискриминант квадратичной функции:
D=(-4)²-4*1*9=16-36=-20 <0 => нет точек пересечения с осью Ох
2)Графиком функции у=х²-4х+9 является парабола, ветви которой направлены
вверх, т.к. а=1 > 0
Следовательно, вся парабола расположена выше оси Ох
Это означает, что данная функция принимает только положительные значения.
Что и требовалось доказать.