Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 3 часа, вернулись обратно через 6 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 9 км/ч? С рисунком , если возможно
Мы берем точку А (2;-1), и что бы проверить, проходит ли функция через данную точку, мы должны, взять значение икса в данной точке, и подставить данное значение в функцию:
Отсюда следует, что функция проходит через данную точку.
Данную операцию можно проделать и 2 задании, но зачем? Мы уже итак знаем что при х=2, у=-1.
А значит, что функция не проходит через точку В.
Уравнение здесь имеет вид u3+u=v3+v, где u=2x2, v=3x+5a. От него можно перейти к равносильному равенству u=v по следующей причине. Функция f(u)=u3+u имеет производную f′(u)=3u2+1, которая всюду положительна. Поэтому f(u) строго монотонно возрастает на всей области определения. Поэтому её значения в различных точках не могут совпадать. Таким образом, мы приходим к равносильному условию u=v, а это квадратное уравнение 2x2−3x−5a=0. Находим дискриминант, и пишем, что он положителен: в этом и только в этом случае уравнение будет иметь более одного корня.