будем считать, что функция называется f(x)f(x).из условия про нее известно, что f(−4)=2f(−4)=2 (точка a), f(−2)=−4f(−2)=−4 (точка b), f(4)=6f(4)=6 (точка с), а между этими точками (узлами) функция линейна, поэтому для построения графика функции f(x)f(x) нужно узлы соединить отрезками.
функции f(2x)f(2x), f(x/2)f(x/2), f(−0,5x)f(−0,5x), f(−3x)f(−3x), тоже линейны между узлами, поэтому для построения их графиков нужно найти значения в узлах, а потом соединить полученные точки отрезками.
например, f(2x)f(2x), при x=−2x=−2 равно f(−4)=2f(−4)=2, поэтому точка a1(−2,2)a1(−2,2) является узлом функцииf(2x)f(2x). аналогично, f(2x)f(2x), при x=−1x=−1 равно f(−2)=−4f(−2)=−4, поэтому точка b1(−1,−4)b1(−1,−4) - тоже узелf(2x)f(2x), как и точка с1(2,6)с1(2,6). для построения графика функции f(2x)f(2x) нужно пары точек a1,,b1a1,,b1 и b1,,c1b1,,c1 соединить отрезками. для функции f(x/2)f(x/2) аналогично получаем узлы a2(−8,2)a2(−8,2), b2(−4,−4)b2(−4,−4), c2(8,6)c2(8,6) и т.д.
Число кратно 3, если cумма цифр числа кратна 3. Число кратно 4, если две последние цифры числа кратны 4.
Рассмотрим условия по порядку.
1) Произведение цифр.
Разложим 24 на множители. 24=2·2·2·3. Получены 4 цифры, а нужно получить пять. Если мы добавим цифру 1 в произведение, то результат не изменится: 24 = 1·2·2·2·3.
Итого, имеем 5 цифр, из которых можно составить пятизначное число.
Первое условие выполнено. 2) Условие - число кратно 3 Признак делимости на 3: На 3 делятся те и только те числа, сумма цифр которых кратна 3.
Возможны варианты Цифры числа 1; 2; 2; 2; 3. Сумма цифр 1+2+2+2+3=10 не кратна 3.
Цифры числа 1;1; 2; 3; 4 Сумма цифр 1+1+2+3+4= 11 не кратна 3.
Цифры числа 1;1;1; 4; 6 Сумма цифр 1+1+1+4+6= 13 не кратна 3.
Цифры числа 1;1;1; 3; 8 Сумма цифр 1+1+1+3+8= 14 не кратна 3.
будем считать, что функция называется f(x)f(x).из условия про нее известно, что f(−4)=2f(−4)=2 (точка a), f(−2)=−4f(−2)=−4 (точка b), f(4)=6f(4)=6 (точка с), а между этими точками (узлами) функция линейна, поэтому для построения графика функции f(x)f(x) нужно узлы соединить отрезками.
функции f(2x)f(2x), f(x/2)f(x/2), f(−0,5x)f(−0,5x), f(−3x)f(−3x), тоже линейны между узлами, поэтому для построения их графиков нужно найти значения в узлах, а потом соединить полученные точки отрезками.
например, f(2x)f(2x), при x=−2x=−2 равно f(−4)=2f(−4)=2, поэтому точка a1(−2,2)a1(−2,2) является узлом функцииf(2x)f(2x). аналогично, f(2x)f(2x), при x=−1x=−1 равно f(−2)=−4f(−2)=−4, поэтому точка b1(−1,−4)b1(−1,−4) - тоже узелf(2x)f(2x), как и точка с1(2,6)с1(2,6). для построения графика функции f(2x)f(2x) нужно пары точек a1,,b1a1,,b1 и b1,,c1b1,,c1 соединить отрезками. для функции f(x/2)f(x/2) аналогично получаем узлы a2(−8,2)a2(−8,2), b2(−4,−4)b2(−4,−4), c2(8,6)c2(8,6) и т.д.
Число кратно 3, если cумма цифр числа кратна 3.
Число кратно 4, если две последние цифры числа кратны 4.
Рассмотрим условия по порядку.
1) Произведение цифр.
Разложим 24 на множители.
24=2·2·2·3.
Получены 4 цифры, а нужно получить пять.
Если мы добавим цифру 1 в произведение, то результат не изменится:
24 = 1·2·2·2·3.
Итого, имеем 5 цифр, из которых можно составить пятизначное число.
Первое условие выполнено.
2) Условие - число кратно 3
Признак делимости на 3: На 3 делятся те и только те числа, сумма цифр которых кратна 3.
Возможны варианты
Цифры числа 1; 2; 2; 2; 3.
Сумма цифр 1+2+2+2+3=10 не кратна 3.
Цифры числа 1;1; 2; 3; 4
Сумма цифр 1+1+2+3+4= 11 не кратна 3.
Цифры числа 1;1;1; 4; 6
Сумма цифр 1+1+1+4+6= 13 не кратна 3.
Цифры числа 1;1;1; 3; 8
Сумма цифр 1+1+1+3+8= 14 не кратна 3.
Других вариантов нет.
О т в е т. Нет такого числа