№5 если в выпуклом четырёхугольнике диагонали равны и равны две противоположные стороны, то по признаку он или прямоугольник, или квадрат, или равнобокая трапеция.
в прямоугольнике и в квадрате диагонали,пересекаясь, делятся пополам, ⇒ ао=до, как половины равных отрезков.
если имеем равнобокую трапецию,то из равенства треугольников, имеющих своими сторонами основание ад и диагонали, получим равные угла между диагоналями и основанием ад ⇒δаод- равнобедренный и ао=од (замечание: чертёж, представленный в неверен, т.к. диагонали преломляются).
№6. т.к. противоположные стороны попарно равны ⇒ четырёхугольник - параллелограмм по признаку ⇒ диагонали точкой пересечения делятся пополам по свойству диагоналей параллелограмма.
объяснение:
№5 если в выпуклом четырёхугольнике диагонали равны и равны две противоположные стороны, то по признаку он или прямоугольник, или квадрат, или равнобокая трапеция.
в прямоугольнике и в квадрате диагонали,пересекаясь, делятся пополам, ⇒ ао=до, как половины равных отрезков.
если имеем равнобокую трапецию,то из равенства треугольников, имеющих своими сторонами основание ад и диагонали, получим равные угла между диагоналями и основанием ад ⇒δаод- равнобедренный и ао=од (замечание: чертёж, представленный в неверен, т.к. диагонали преломляются).
№6. т.к. противоположные стороны попарно равны ⇒ четырёхугольник - параллелограмм по признаку ⇒ диагонали точкой пересечения делятся пополам по свойству диагоналей параллелограмма.
(x² + 4x)(x² + 4x - 17) + 60 = 0. Обозначим x² + 4x = y. Тогда уравнение примет вид: y(y - 17) + 60 = 0 => y² - 17y + 60 = 0. По теореме Виета y₁*y₂ = 60 и y₁ + y₂ = 17. Отсюда y₁ = 5, y₂ = 12. Тогда, возвращаясь к первоначальной переменной, имеем: x² + 4x = y₁ => x² + 4x = 5 => x² + 4x - 5 = 0. По т. Виета x₁*x₂ = -5, x₁ + x₂ = -4 => x₁ = -5, x₂ = 1. Это первая пара корней. Аналогично x² + 4x = y₂ => x² + 4x = 12 => x² + 4x - 12 = 0. По т. Виета x₃*x₄ = -12, x₃ + x₄ = -4 => x₃ = -6, x₄ = 2. Это вторая пара корней.
ответ: (x₁, x₂) = (-5, 1), (x₃, x₄) = (-6, 2).