Творческое задание (работа в группах) Магический квадрат Задание: Запишите степени x, x2, x3, x4, x5, x6, х7, х8, х9 в пустые клетки квадрата так, чтобы произведение их равнялось x15.Х5 находится по середине
Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение
a(х — x1)(х — x2) = 0, (1)
где а — любое отличное от нуля действительное число. С другой стороны, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).
Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.
Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.
ответ. Корни 1 и —2 имеют все квадратные уравнения вида
а(х — 1)(х + 2) = 0,
или
ах2 + ах — 2а = 0,
где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение
60 м и 50 м.
Объяснение:
Длина забора - это периметр прямоугольника. Сумма длины и ширины - половина периметра, 220 : 2 = 110 (м).
Пусть ширина прямоугольника равна х м, тогда длина прямоугольника равна (110 - х) м.
Зная, что площадь равна 3000 м², составим и решим уравнение:
х(110 - х) = 3000
- х² + 110х - 3000 = 0
х² - 110х + 3000 = 0
D = 12100 - 12000 = 100
x1 = (110+10)/2 = 60;
x2 = (110-10)/2 = 50.
Если длина больше ш рины, то она равна 60 м, тогда
110 - 60 = 50 (м) - ширина прямоугольника.
ответ: 60 м и 50 м.
для меня это самое понятное... надеюсь
Объяснение:
Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение
a(х — x1)(х — x2) = 0, (1)
где а — любое отличное от нуля действительное число. С другой стороны, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).
Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.
Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.
ответ. Корни 1 и —2 имеют все квадратные уравнения вида
а(х — 1)(х + 2) = 0,
или
ах2 + ах — 2а = 0,
где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение
х2 + х — 2 = 0.