Сначала всё обозначим: ширина бассейна по условию х; длина бассейна х+6;ширина прямоугольника,в котором находится бассейн, х + 1 (добавилось по 0,5 м с каждой стороны за счёт дорожки); длина этого же прямоугольника х + 7 (также добавилось по 0,5 м с двух сторон за счёт дорожки). Дальше из площади большого прямоугольника вычитаем площадь малого(бассейн) и получаем разницу 15 кв. метров - площадь всей дорожки по условию: (x+7) *(x+1) - (x+6) * x = 15x^2 + x + 7x - x^2 - 6x = 15 2x=8 x=4(ширина бас.); 4+6=10 (длина бас.).
Решение с формулы n-члена арифметической прогрессии:
a₁=16
d=-1.1
a(n)=0 - остановка
a(n)=a₁+d(n-1)
16+(-1.1)(n-1)=0
16-1.1n+1.1=0
-1.1n=-17.1
n=15.(54)
Поскольку n - всегда целое число, значение 0 не является членом данной арифметической прогрессии. Тем не менее, выяснилось, что для полного торможения (остановки), потребуется 15.(54) сек.
ширина бассейна по условию х;
длина бассейна х+6;ширина прямоугольника,в котором находится бассейн, х + 1 (добавилось по 0,5 м с каждой стороны за счёт дорожки);
длина этого же прямоугольника х + 7 (также добавилось по 0,5 м с двух сторон за счёт дорожки).
Дальше из площади большого прямоугольника вычитаем площадь малого(бассейн) и получаем разницу 15 кв.
метров - площадь всей дорожки по условию:
(x+7) *(x+1) - (x+6) * x = 15x^2 + x + 7x - x^2 - 6x = 15
2x=8
x=4(ширина бас.);
4+6=10 (длина бас.).
Дано:
Торможение:
1-я сек. - 16 м
каждая следующая сек. на 1.1 м меньше
Найти: ? полных сек. для остановки
Решение с формулы n-члена арифметической прогрессии:
a₁=16
d=-1.1
a(n)=0 - остановка
a(n)=a₁+d(n-1)
16+(-1.1)(n-1)=0
16-1.1n+1.1=0
-1.1n=-17.1
n=15.(54)
Поскольку n - всегда целое число, значение 0 не является членом данной арифметической прогрессии. Тем не менее, выяснилось, что для полного торможения (остановки), потребуется 15.(54) сек.
Округляем до целых секунд: 15.(54)≈16 сек.
ответ: полных 16 сек. потребуется