2. а) у=1 при х=0 следовательно у=1 точка пересечения с осью ординат и) у=2 при х=0 следовательно у=2 точка пересечения с осью ординат
для построения прямых вычислим еще точка пересечения с осью обсцисс: а) х=1 при у=0 и) х=4 при у=0 выполняем построение. рисуем оси, ставим направления и выбираем единичные отрезки:
| Y | | | | | 2 | | 1 | 0xx> X | 1 4 |
теперь аккуратно соединим точку 1 на оси ОУ и точку 1 на оси ОХ - это прямая а). Также аккуратно соединим точку 2 на оси ОУ и точку 4 на оси ОХ - это прямая и)
Кусочно- заданная функция - это функция , которая на различных промежутках оси ОХ задаётся разными функциями. ( Как бы на разных "кусочках" оси ОХ задаются разные функции).
На промежутке (-∞ ; -2 ] функция представляет из себя гиперболу . График гиперболы рисуем только на этом промежутке (сплошной линией), оставшаяся часть графика на промежутке (-2 ; +∞) стирается (либо рисуется пунктирной линией). Точка с абсциссой х= -2 , точка (-2,1) , принадлежит этому графику.
На промежутке (-2 ; 2] рисуем график у=|x|-1 . Это график функции у=|x|, который смещён на 1 единицу вниз по оси ОУ. Точка (-2,1) не принадлежит графику, а точка (2, 1) принадлежит графику.
На промежутке (2 ; + ∞) рисуем график функции Это график функции , смещённый вдоль оси ОХ на 2 единицы вправо и вдоль оси ОУ на 1 единицу вверх . Точка (2,1) не принадлежит графику функции.
График кусочно заданной функции нарисован сплошными линиями.
и) у= -0,5*х+2 k=-0.5 l=2
2. а) у=1 при х=0 следовательно у=1 точка пересечения с осью ординат
и) у=2 при х=0 следовательно у=2 точка пересечения с осью ординат
для построения прямых вычислим еще точка пересечения с осью обсцисс:
а) х=1 при у=0 и) х=4 при у=0
выполняем построение. рисуем оси, ставим направления и выбираем единичные отрезки:
| Y
|
|
|
|
| 2
|
| 1
|
0xx> X
| 1 4
|
теперь аккуратно соединим точку 1 на оси ОУ и точку 1 на оси ОХ - это прямая а). Также аккуратно соединим точку 2 на оси ОУ и точку 4 на оси ОХ - это прямая и)
Кусочно- заданная функция - это функция , которая на различных промежутках оси ОХ задаётся разными функциями. ( Как бы на разных "кусочках" оси ОХ задаются разные функции).
На промежутке (-∞ ; -2 ] функция представляет из себя гиперболу . График гиперболы рисуем только на этом промежутке (сплошной линией), оставшаяся часть графика на промежутке (-2 ; +∞) стирается (либо рисуется пунктирной линией). Точка с абсциссой х= -2 , точка (-2,1) , принадлежит этому графику.
На промежутке (-2 ; 2] рисуем график у=|x|-1 . Это график функции у=|x|, который смещён на 1 единицу вниз по оси ОУ. Точка (-2,1) не принадлежит графику, а точка (2, 1) принадлежит графику.
На промежутке (2 ; + ∞) рисуем график функции Это график функции , смещённый вдоль оси ОХ на 2 единицы вправо и вдоль оси ОУ на 1 единицу вверх . Точка (2,1) не принадлежит графику функции.
График кусочно заданной функции нарисован сплошными линиями.