375-348=27 (ВНИМАНИЕ! Всегда от большего вычитаем меньшее - то есть нельзя вычитать 348-375 !) 348-27=321 321-27=294 294-27=267 267-27=240 240-27=213 213-27=186 186-27=159 159-27=132 132-27=105 105-27=78 78-27=51 51-27=24 27-24=3 24-3=21 21-3=18 18-3=15 15-3=12 12-3=9 9-3=6 6-3=3
Итак НОД=3 1848/3=616 375/3=125
Как видим, алгоритм Евклида довольно медленный. Позже получили расширенный алгоритм Евклида, где монотонное вычитание заменили делением. Вычисление НОД расширенным алгоритмом значительно быстрее
Плот проплыл 36 км за 36 / 4 = 9 часов . По условию задачи имеем : 126/(х + 4) + 126/ (х - 4) = 9 - 1
126 *(х - 4) + 126 * (х + 4) = 8 * (x^2 - 16)
126x - 504 + 126x + 504 = 8x^2 - 128
8x^2 - 252x - 128 = 0
2x^2 - 63x - 32 = 0 . Найдем дискриминант D квадратного уравнения и найдем корни этого уравнения . D = 63^2 - 4 * 2 * (- 32) = 3969 + 252 = 4225 . Корень квадратный из дискриминанта : 1- ый = (-(-63 + 65)) /2 * 2= 128 / 4 = 32 .; 2 - ой = (-(-63) - 65)/ 2*2 = - 2 / 4 = - 0,5 . Второй корень не подходит , так как скорость не может быть меньше 0 .
Сбственная скорость равна : 32 км/час
1848 375
Находим разность:
1848-375=1473
Теперь получили числа:
1473 375
Находим разность
1473-375=1098 и т.д:
1098-375=723
723-375=348
375-348=27
(ВНИМАНИЕ! Всегда от большего вычитаем меньшее - то есть нельзя вычитать 348-375 !)
348-27=321
321-27=294
294-27=267
267-27=240
240-27=213
213-27=186
186-27=159
159-27=132
132-27=105
105-27=78
78-27=51
51-27=24
27-24=3
24-3=21
21-3=18
18-3=15
15-3=12
12-3=9
9-3=6
6-3=3
Итак НОД=3
1848/3=616
375/3=125
Как видим, алгоритм Евклида довольно медленный.
Позже получили расширенный алгоритм Евклида, где монотонное вычитание заменили делением. Вычисление НОД расширенным алгоритмом значительно быстрее