а) Так как знаменатели дробей равны, можем приравнять числители:
х² = 5х - 6
х² - 5х + 6 = 0, получили квадратное уравнение. Ищем корни.
х первое, второе = (5 + - √25-24) : 2
х первое = 6 : 2 = 3 х второе = 4 : 2 = 2
b) Здесь немного изменим знаменатель, чтобы приравнять числители:
5 - х = -х + 5 = - (х - 5)
Подставляем изменённый второй знаменатель во вторую дробь, она сразу становится со знаком -
Сейчас можно приравнять числители.
х² - 6х = -5
х² - 6х + 5 = 0 Получили квадратное уравнение, ищем корни:
х первое, второе = (6 + - √36 -20) : 2
х первое = 10 : 2 = 5 х второе = 2 : 2 = 1
c) Решено верно, проверено)
Объяснение:
2)cos124°=cos(90+34)=-sin34
3)sin242°=sin(270-28)=-cos28
4)cos196°=cos(180+16)=-cos16
5)sin175°=sin(180-5)=sin5
6)cos 235°=cos(270-35)=-cos35
7)tg 111°=tg(90+21)=-ctg21
8) ctg 215°=ctg(180+35)=ctg35
9)sin 312°=sin(270+42)=-cos42
10) cos 166°=cos(180-14)=-cos14
11)sin 290°=sin(270+20)=-cos20
12)ctg 163°=ctg(180-17)=-ctg17
13) tg 286°=tg(270+16)=-ctg16
14)cos 326°=cos(360-34)=cos34
15)sin 221°=sin(180+41)=-sin41
16) cos 306°=cos(270+36)=sin36
17) tg 187°=tg(180+7)=tg7
18) ctg 319°=ctg(360-41)=-ctg41
а) Так как знаменатели дробей равны, можем приравнять числители:
х² = 5х - 6
х² - 5х + 6 = 0, получили квадратное уравнение. Ищем корни.
х первое, второе = (5 + - √25-24) : 2
х первое = 6 : 2 = 3 х второе = 4 : 2 = 2
b) Здесь немного изменим знаменатель, чтобы приравнять числители:
5 - х = -х + 5 = - (х - 5)
Подставляем изменённый второй знаменатель во вторую дробь, она сразу становится со знаком -
Сейчас можно приравнять числители.
х² - 6х = -5
х² - 6х + 5 = 0 Получили квадратное уравнение, ищем корни:
х первое, второе = (6 + - √36 -20) : 2
х первое = 10 : 2 = 5 х второе = 2 : 2 = 1
c) Решено верно, проверено)
Объяснение: