У циліндрі паралельно його осі проведено площину на відстані 3 см від неї . Ця площина перетинає основну циліндра по хорді, яка дорівнює 8см . Знайти радіус циліндра
Два фермера, работая вместе, могут вспахать поле за 25 часов. Производительность труда у первого и второго относятся как 2:5. Фермеры планируют работать поочередно. Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
х+у=125 2х=5у Последовательно: 2х+2у=2/25 2х-5у=0 7у=2/25 и у=2175 Тогда х=135 Итак, производительности мы нашли. Поочередно фермеры работали 45,5 часа = 91/2 часа. Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов. Уравнение: (91/2-Т)⋅(1/35)+Т⋅(2/175)=1 имеет корень Т=17,5 Проверка. 1. проверим , что х+у=125 1/35+2/175=(70+175)/(175⋅35)=7/175=1/25 2. проверим, что 2х=3у: 2/35=5⋅2/175 3. Проверим уравнение при поочередной работе: Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов 28⋅135+(352)⋅(2175)=28/35+1/5=1 ОТВЕТ: 17,5
Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
Функция f(x) называется возрастающей, если для для любых двух чисел таких, что x₁ < x₂, выполняется условие f(x₁) < f(x₂).
Т.е. для возрастающей функции при x₁ < x₂ разность f(x₁) - f(x₂) < 0.
Выберем два последовательных числа, n и (n + 1). У нас выполняется условие n < n + 1.
Оценим разность значений функции при этих значениях аргумента:
f(n) = 3n - 5
f(n+1) = 3(n + 1) - 5 = 3n + 3 - 5 = 3n - 2
f(n) - f(n+1) = 3n - 5 - (3n - 2) = 3n - 5 - 3n +2 = -3
f(n) - f(n+1) = - 3 < 0
⇒ f(n) < f(n+1) функция возрастающая. Доказано.