V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
1) f(x)=1/(sin(x) - 0,5), т.к. функция y = 1/x определена на всем числовом промежутке, кроме x = 0, то и данная функция определена при всех x, кроме sin(x) - 0,5 = 0
sin(x) = 1/2
x = arcsin(1/2) + 2пn => x = п/6 + 2пn
x = п - arcsin(1/2) + 2пn => x = 5п/6 + 2пn
ответ: x ∈ R, x ≠ п/6 + 2пn, 5п/6 + 2пn, n ∈ Z
2)
а) y = 2sin(x ) - 3
Зная, что |sin(x)|≤ 1, то рассмотрим максимальное и минимальное значение функции:
найти максимум, х∈(0, 40).
найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х
она равна 3х²-208х+2560
найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0
1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3=
=(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3=
=(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16
ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
вот как-то так...-))
1) f(x)=1/(sin(x) - 0,5), т.к. функция y = 1/x определена на всем числовом промежутке, кроме x = 0, то и данная функция определена при всех x, кроме sin(x) - 0,5 = 0
sin(x) = 1/2
x = arcsin(1/2) + 2пn => x = п/6 + 2пn
x = п - arcsin(1/2) + 2пn => x = 5п/6 + 2пn
ответ: x ∈ R, x ≠ п/6 + 2пn, 5п/6 + 2пn, n ∈ Z
2)
а) y = 2sin(x ) - 3
Зная, что |sin(x)|≤ 1, то рассмотрим максимальное и минимальное значение функции:
y = 2 - 3 = -1
y = -2 - 3 = - 5
y = 0 - 3 = -3
ответ: y ∈ [-5; - 1]
б)y = 1 - cos(2x) = 1 - (cos^2(x) - sin^2(x)) = 1 - cos^2(x) + sin^2(x) = 2* sin^2(x)
y = 2 * 1^2 = 2
y = 2 * 0 = 0
ответ: y ∈ [0;2]
3)
а) y = x + cos(x), пусть x = -x
y = -x + cos(-x) = - x + cos(x)
- x + cos(x) ≠ x + cos(x) => ф-я нечетная
б) y = 3x^2 * sin x, пусть x = -x
y = 3 * (-x)^2 * sin(-x) = 3x^2 * (-sin(x)) = - 3x^2 * sin(x)
- 3x^2 * sin(x) ≠ 3x^2 * sin x => ф-я нечетная