У Джеймса есть волшебная шляпа, полная бумажек с цифрами на них. Он отдает шляпу своей подруге Анне, которая вытаскивает из шляпы 4 числа: $3$, $-4$, $-2$ и $0$. Затем Джеймс вытаскивает из шляпы 3 числа: $2$, $4$, и $1$. Какова сумма всех чисел, которые Джеймс и Анна вытащили из волшебной шляпы?
1) D = 25 - 24 = 1 => x = (5+-1)/2 => x1 = 3, x2 = 2.
ответ: (x-3)(x-2).
2) D = 49 - 48 = 1 => x = (7+-1)/2 => x1 = 4, x2 = 3.
ответ: (x-4)(x-3).
3) D = 9 + 16 = 25 => x = (3+-5)/2 => x1 = 4, x2 = -1.
ответ: (x-4)(x+1).
4) D = 4 + 60 = 64 => x = (-2+-8)/2 => x1 = 3, x2 = -5.
ответ: (х-3)(х+5).
1) Вы уверены, что не попутали плюс и минус?) Доказать невозможно, поскольку два этих выражения не равны..
2) (a+b)^2 = (a+b)(a+b).
Умножим скобку на скобку.
a^2 + ab + ba + b^2 = a^2 + 2ab + b^2
=> (a+b)^2 = a^2 + 2ab + b^2.
Доказали.
Потом находишь общий знаменатель:(х+1)(х+2)(х+4)(х-1).
к первой дроби дополнительный множитель:(х-1)(х+4)
ко второй:(х+1)(х+2)
к единице все скобки
получается:6х квадрат+24х-6х-24+8х квадрат+16х+8х+16-х в 4-ой степени+4х в кубе+х в кубе-4х квадат+2х в кубе-8х квадрат-2х квадарт+8х+х в кубе-4х квадарт-х квадарт+4х+2х квадрат-8х-2х+8
приводим подобные слагаемые:-х в 4-ой степени +8х в кубе-7х квадрат +44х/(х+1)(х+2)(х-1)(х+4)
теперь умножаем на (-1) и меняем знаки на противоположные (в числителе)
затем система, числитель равен нулю, а знаменатель не равен нулю