Пусть l метров в час - скорость бурения 3 скважины, а t - время, через которое её глубина стала равной глубине второй скважины. Так как последняя равна 1*t=t метров в час, то получаем уравнение l*(t-1)=t. По условию, l*(t-1+1,5)=l*(t+0,5)=2*(t+1,5). Из первого уравнения находим l=t/(t-1). Подставляя это выражение во второе уравнение, получаем уравнение t(t+0,5)/(t-1)=(t²+0,5*t)/(t-1)=2t+3, или t²+0,5*t=(2t+3)(t-1), или t²+0,5*t=2t²+t-3, или t²+0,5t-3=0, или 2t²+t-6=0. Дискриминант D=1²-4*2*(-6)=49=7². Отсюда t=(-1+7)/4=1,5 часа, а l=t/(t-1)=1,5/0,5=3 метра в час. ответ: 3 метра в час.
Найдите наибольшее целое число,которое является решением системы неравенств:
{3 - 5(2x + 1) > 7x - 2(x + 1)
{6(1 + x) + 2 > 3(1 - x) + 7x
{3 - 10x - 5 > 7x - 2x -2
{6 +6x + 2 > 3 -3 x + 7x
{ - 10x -5x > 2 -2
{ 6x -4x > 3 -8
{ - 15x > 0
{ 2x > -5
{ x < 0
{ x > -2,5
х принадлежит (-2,5;0)
Все целые числа решения системы неравенств -2;-1;0
Максимальное целое число - 0
х належить (-2,5;0)
Всі цілі числа рішення системи нерівностей -2;-1;0
Максимальне ціле число - 0