№1
1) 5a(5a^4 - 6a^2 + 3) = 5a * 5a^4 - 5a * 6a^2 + 5a * 3 = 25a^5 - 30a^3 + 15a;
2) (x + 4)(3x - 2) = x * 3x - 2 * x + 4 * 3x - 4 * 2 = 3x^2 - 2x + 12x - 8 = 3x^2 + 10x - 8;
3) (6m + 5n)(7m - 3n) = 6m * 7m - 6m * 3n + 5n * 7m - 5n * 3n = 42m^2 - 18mn + 35mn - 15n^2 = 42m^2 + 17mn - 15n^2;
4) (x + 5)(x^2 + x - 6) = x * x^2 + x * x - 6 * x + 5 * x^2 + 5 * x - 5 * 6 = x^3 + x^2 - 6x + 5x^2 + 5x - 30 = x^3 + x^2 + 5x^2 - 6x + 5x - 30 = x^3 + 6x^2 - x - 30
№8
Решение: 1) x^2 - 9x + 18. 2) Решим, как квадратное уравнение: x^2 - 9x + 18= 0. 3) Ищем дискриминант: D = b^2 - 4ac; a = 1, b = - 9, c = 18. D = 81 - 4 * 1 * 18 = 81 - 72 = 9 > 0, значит уравнение имеет два корня. 4) x1 = (- b + √D) / 2a, x2 = (- b - √D) / 2a. 5) Получаем: x1 = (9 + 3) / 2 = 12 / 2 = 6, x2 = (9 - 3) / 2 = 6 / 2 = 3. 6) Получаем следующее разложение на множители: x^2 - 9x + 18 = (x - 6) (x - 3). ответ: (x - 6) (x - 3)
№7
27⁴-9⁵=(3³)⁴-(3²)⁵=3¹²-3¹⁰=3¹⁰ *(3²-1)=3¹⁰ *8
произведение 3¹⁰ *8 делиться на 8:
3¹⁰ *8:8=3¹⁰
ответ: значение выражение 27⁴-9⁵ кратно 8
№Сделаем вычисления если а = 0,3, b = - 1 2/3.
24 a b + 32 a - 3 b - 4;
Подставим числа вместо а и b.
24 * 0,3 * (- 1 2/3) + 32 * 0,3 - 3 * (- 1 2/3) - 4 = 7,2 * (- 5/3) + 9,6 +3/1 * 5/3 - 4 = 72/10 * (-5/3) + 96/10 + 5 - 4 = - 24/2 + 96/10 + 1 = - 12 + 9,6 + 1 = - 1,4.
Объяснение:
№1
1) 5a(5a^4 - 6a^2 + 3) = 5a * 5a^4 - 5a * 6a^2 + 5a * 3 = 25a^5 - 30a^3 + 15a;
2) (x + 4)(3x - 2) = x * 3x - 2 * x + 4 * 3x - 4 * 2 = 3x^2 - 2x + 12x - 8 = 3x^2 + 10x - 8;
3) (6m + 5n)(7m - 3n) = 6m * 7m - 6m * 3n + 5n * 7m - 5n * 3n = 42m^2 - 18mn + 35mn - 15n^2 = 42m^2 + 17mn - 15n^2;
4) (x + 5)(x^2 + x - 6) = x * x^2 + x * x - 6 * x + 5 * x^2 + 5 * x - 5 * 6 = x^3 + x^2 - 6x + 5x^2 + 5x - 30 = x^3 + x^2 + 5x^2 - 6x + 5x - 30 = x^3 + 6x^2 - x - 30
№8
Решение: 1) x^2 - 9x + 18. 2) Решим, как квадратное уравнение: x^2 - 9x + 18= 0. 3) Ищем дискриминант: D = b^2 - 4ac; a = 1, b = - 9, c = 18. D = 81 - 4 * 1 * 18 = 81 - 72 = 9 > 0, значит уравнение имеет два корня. 4) x1 = (- b + √D) / 2a, x2 = (- b - √D) / 2a. 5) Получаем: x1 = (9 + 3) / 2 = 12 / 2 = 6, x2 = (9 - 3) / 2 = 6 / 2 = 3. 6) Получаем следующее разложение на множители: x^2 - 9x + 18 = (x - 6) (x - 3). ответ: (x - 6) (x - 3)
№7
27⁴-9⁵=(3³)⁴-(3²)⁵=3¹²-3¹⁰=3¹⁰ *(3²-1)=3¹⁰ *8
произведение 3¹⁰ *8 делиться на 8:
3¹⁰ *8:8=3¹⁰
ответ: значение выражение 27⁴-9⁵ кратно 8
№Сделаем вычисления если а = 0,3, b = - 1 2/3.
24 a b + 32 a - 3 b - 4;
Подставим числа вместо а и b.
24 * 0,3 * (- 1 2/3) + 32 * 0,3 - 3 * (- 1 2/3) - 4 = 7,2 * (- 5/3) + 9,6 +3/1 * 5/3 - 4 = 72/10 * (-5/3) + 96/10 + 5 - 4 = - 24/2 + 96/10 + 1 = - 12 + 9,6 + 1 = - 1,4.
Объяснение:
4-x^2≥0 ili 2sinx-√3=0
4-x^2=0 sinx=√3/2
x=-2; x=2 x=(-1)^n arcsin(√3/2)+πn;n celoe
- + - x=(-1)^n (π/3)+πn; x [-2:2] ; x=-2π/3; π/3
--- -2--2>x
x [-2;2]
ответ.-2;2; -2π/3;π/3 точно не знаю! Напиши мне ответ, просто интересно!
2)√(5/4-х) -√(5/4+х)=√1/2-1/2 х);
(√(5-4х) -√(5+4х))/2=(√1-х) /√2; возведем в квадрат
(5-4х+5+4х-2√(5-4х)(5+4х) ) /4=(1-х)/2; умножим на 4
10-2√(25 - 16x^2)=2(1-x)
-2√(25-16x^2)=-8-2x; √(25-16x^2)=4+x
25-16x^2=(4+x)^2; -16x^2-x^2-8x-16+25=0; -17x^2-8x+9=0; 17x^2+8x-9=0
D1=4^2-17*(-9)=16+153=169=13^2; x=(-4+-13)/17; x1=-1;x2=9/17
Проверка x=9/17; √(5/4-9/17) -√(5/4+9/17)=√1/2-1/2 *9/17;
√(85-36)/68) -√(5/4+9/17)/68=√49/68=7/√68;
√(1/2-1/2*9/17)=√((17-9)/68=√(8/68)
Равенство неверно! х=9/17 не корень уравнения
х=-1; √(5/4+1 - √(5/4-1)=√(1/2+1/2)
3/2-1/2=1 верно! х=-1 корень уравнения
ответ-1