У=х2 і у=3х+1 побудувати в одній системі координат графіки функцій і встановити, скільки спільних точок мають ці графіки. не можу видалити питання, вибачте, вище відредагована версія
Похожее задание было уже вчера или позавчера здесь. Ну да ладно))) Суть в том, что есть на свете волшебная такая штука - дискриминант. (Похоже на слово дискриминация, правда?) Ну, он и производит дискриминацию - разделяет квадратные уравнения на те, где нет корней (это когда D<0); те, где корень всего один (когда D=0) и те, где корней два (D>0). Поэтому мы сейчас запишем выражение для нахождения дискриминанта (D=b^2-4ac), подставив а=2р-1; b=-(4p+3)= -4-3; c=2p+3, потом упростим его и посмотрим, при каких р он неотрицателен, а значит, уравнение имеет корни. Итак, к делу:
ответ: х∈[-2,625; +∞).
(К слову: при р=0,625 решение уравнения будет одно, при p>0,625 их будет два.)
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Суть в том, что есть на свете волшебная такая штука - дискриминант. (Похоже на слово дискриминация, правда?) Ну, он и производит дискриминацию - разделяет квадратные уравнения на те, где нет корней (это когда D<0); те, где корень всего один (когда D=0) и те, где корней два (D>0). Поэтому мы сейчас запишем выражение для нахождения дискриминанта (D=b^2-4ac), подставив а=2р-1; b=-(4p+3)= -4-3; c=2p+3, потом упростим его и посмотрим, при каких р он неотрицателен, а значит, уравнение имеет корни.
Итак, к делу:
ответ: х∈[-2,625; +∞).
(К слову: при р=0,625 решение уравнения будет одно, при p>0,625 их будет два.)
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение: