В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
nastyaorinozl1jy
nastyaorinozl1jy
22.01.2020 12:52 •  Алгебра

у кого с производными хорошо. ответ подробный

Показать ответ
Ответ:
vkunney
vkunney
24.09.2021 01:41

Чтобы уравнение имело  действительное решение   ,  достаточно чтобы дискриминант был неотрицательным.

D/4 = (a^3-b^3)^2 -(a^2-b^2)*(a^4-b^4)>=0

То  есть ,  необходимо доказать ,  что  при любых a и b справедливо строгое неравенство :

(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4)

 (a-b)^2*(a^2+ab+b^2)^2>=(a-b)^2* (a+b)^2 * (a^2+b^2)

Заметим ,  что  когда  a=b  , получаем  что  0=0 , то есть условие выполнено.  И  в этом случае уравнение имеет бесконечно много решений.

Теперь,  поскольку  мы разобрали этот случай и  (a-b)^2>=0 , то для случая  a≠b , можно поделить обе части неравентсва на (a-b)^2  не меняя знак неравенства  :

(a^2+ab+b^2)^2>=(a+b)^2*(a^2+b^2)

( a^2+ab+b^2)^2 >= (a^2+2ab+b^2)*(a^2+b^2)

Теперь сделаем слудующий прием , поскольку  (a^2+b^2)^2>0   при a≠b≠0

То можно поделить на это выражение обе части неравенства не меняя его знак :

(  1+ ab/(a^2+b^2)  )^2>= 1+ 2ab/(a^2+b^2)

Тогда можно сделать замену:

ab/(a^2+b^2)=t

(1+t)^2>=1+2t

t^2+2t+1>=1+2t

t^2>=0 (верно)

Таким образом :

(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4) , то  есть  D>=0.

Вывод :  уравнение  имеет  действительное решение при  любых действительных  а и b.

Что и требовалось доказать.

0,0(0 оценок)
Ответ:
Аленушка54545454
Аленушка54545454
02.01.2022 23:54
Последовательные четные числа отличаются друг от друга на 2, поэтому:

Пусть среднее из этих трех чисел будет   х , тогда первое будет х - 2, а последнее  х + 2. Тогда квадрат второго запишем как  х², а удвоенное произведение первого и третьего - как 2(х - 2)(х + 2). Учитывая, что  х² на 56 меньше, чем 2(х - 2)(х + 2), составим уравнение и решим его:
2(x - 2)(x + 2)- x^{2} =56 \\ 


Применяем формулу разности квадратов:
2( x^{2} -4)- x^{2} -56=0 \\ 
2x^{2} -8- x^{2} -56=0 \\ 
 x^{2} -64=0 \\ 
(x-8)(x+8)=0 \\ 
x_1 =8; x_2=-8\\

Второй корень не подходит по условию (нам нужны только натуральные числа), значит, х = 8; тогда три задуманных числа - это 6, 8 и 10.

Проверка:
8² + 56 = 2*6*10
64 + 56 = 120
120 = 120

ответ: искомые числа - это  6, 8, 10.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота