Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3
1)x2 + 8x + 7 = 0
D = b2 - 4ac
D = 64 - 28 = 36 = 6^2
x1,2 = -b ± √D/2a
x1 = -8 + 6/2 = - 2/2 = -1
x2 = -8 - 6/2= - 14/2 = -7
ответ: x1 = -1; x2 = -7
2) y=2x^2-8x
y=2x^2-8x=2x(x-4)=0
2x=0 x-4=0
x=0 x=4
3)-0.5x2 + 1x + 1.5 = 0
Делим на 0.5:
-x2 + 2x + 3 = 0
D = b2 - 4ac
D = 4 + 12 = 16 = 4^2
x1,2 = -b ± √D/2a
x1 = -2 + 4/-2 = - 2/2 = -1
x2 = -2 - 4/-2 = 6/2 = 3
ответ: x1 = -1; x2 = 3
4)-0.25x2 - 3x - 8 = 0
D = b2 - 4ac
D = 9 - 8 = 1
x1,2 = -b ± √D.2a
x1 = 3 + 1/-0.5 = - 4/0.5 = -8
x2 = 3 - 1/-0.5 = - 2/0.5 = -4
ответ: x1 = -8; x2 = -4