На полуокружности АВ взяты точки C и D так, что дуга АC=37 градусов , дуга BD=23 градуса.Найдите хорду CD ,если радиус окружности равенR=15 см.Сделайте плз с чертежом и как можно понятнее каждое действие
построим рисунок по условию
дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, KD-катет
по свойству прямоугольного треугольника KD=OD*sin(KOD)=R*sin60=15*√3/2
На полуокружности АВ взяты точки C и D так, что дуга АC=37 градусов , дуга BD=23 градуса.Найдите хорду CD ,если радиус окружности равенR=15 см.Сделайте плз с чертежом и как можно понятнее каждое действие
построим рисунок по условию
дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, KD-катет
по свойству прямоугольного треугольника KD=OD*sin(KOD)=R*sin60=15*√3/2
тогда хорда CD=2KD=2*15*√3/2=15√3
ответ хорда CD=15√3
1) 5sinx =3 ⇔ sinx = 0,6 ⇒ x = (-1)ⁿarcsin(0,6) +πn , n ∈ ℤ .
2) 1 - 2sinx = 0⇔ sinx = 1/2 ⇒ x = (-1)ⁿπ/6 +πn , n ∈ ℤ .
3) 4sinx +5 =0 ⇔ sinx = -1,25 ⇒ x ∈ ∅ . не имеет решения | sinx | ≤ 1
4) 2sin(3x +π/3) + √3 =0 ⇔sin(3x +π/3) = -(√3) /2 ⇒
3x+ π/3 = (-1) ⁿ⁻¹ π/3 + πn ⇔ (совокупность _ИЛИ )
[ 3x+ π/3 = - π/3 + π*2k ; 3x+ π/3 = π/3 + π*(2k+1) , k ∈ ℤ ⇔
[ x = - 2π/9 + (2π/3)k ; x= (π/3)(2k+1) , k ∈ ℤ
5) 12sin(x/4 -π/6) -12 =0 ⇔sin(x/4 -π/6) =1 ⇒ x/4 -π/6 =π/2 +2πk ,k ∈ ℤ ⇔
x = 8π/3 +8πk ,k ∈ ℤ
6) (2sin4x - 4)(2sinx+1) =0 ⇔ (sin4x -2)(sinx +1/2) = 0 ||sin4x ≠2 || ⇔
sinx +1/2 =0 ⇔sinx = -(1/2) ⇒ x =(-1) ⁿ⁻¹ *(π/6) + πn , n ∈ ℤ
7) sin(x/2)cos(x/3) -cos(x/2)sin(x/3) =0⇔sin(x/2 - x/3) =0 ⇔sin(x/6) =0 ⇒
x/6 =πn , n ∈ ℤ ≡ x = 6πn , n ∈ ℤ
8) 4sin3x*cos3x - √2 =0 ⇔ 2sin(2*3x) - √2 =0 ⇔sin(6x) =(√2)/2 ⇔
6x =π/4 +πn , n∈ℤ ⇔ x = π/24 +(π/4)*n , n∈ℤ