1920; 1984
Объяснение:
Ясно, что n > k
Предположим, что n>2^11 = 2048, но тогда
min(2^n - 2^k) = 2^12 - 2^11 =2048 (min - минимально возможно значение)
Это нас не устраивает, ибо XX век это все года принадлежащие промежутку: [1901; 2000]
Аналогично, если n<2^11, то
max(2^n - 2^k) = 2^10 - 2^1 =1022 (max - максимально возможное значение)
Это так же не укладывается в интервал: [1901; 2000]
Таким образом, n = 2^11, а для k тогда остается только два варианта:
k= 6; 7
То есть существует только два таких года:
1) 2^11 - 2^6 = 2048 - 64 = 1984
2) 2^11 - 2^7 = 2048 - 128 = 1920
Если не помните наизусть, приложил табличку степеней двоек.
2sin2x + 3sinxcosx - 3cos2x = 1;
Представим 1 в виде суммы по основному тригонометрическому тождеству:
sin2x + 3cosxsinx - 3cos2x = sin2x + cos2x;
Приведем подобные:
sin2x + 3cosxsinx - 4cos2x = 0;
Разделим каждый член уравнения на cos2x:
tg2x + 3tgx - 4 = 0;
Произведем замену и решим квадратное уравнение:
t2 + 3t - 4 = 0;
D = 9 + 16 = 25;
t = (-3 +- 5)/2;
t1 = -4, t2 = 1;
Сделаем обратную замену:
tgx = 1; x = pi/4 + pin, n из Z;
tgx = -4; x = arctg(-4) pin, n из Z.
ответ: pi/4 + pin, n из Z; arctg(-4) pin, n из Z.
Оцени!
1920; 1984
Объяснение:
Ясно, что n > k
Предположим, что n>2^11 = 2048, но тогда
min(2^n - 2^k) = 2^12 - 2^11 =2048 (min - минимально возможно значение)
Это нас не устраивает, ибо XX век это все года принадлежащие промежутку: [1901; 2000]
Аналогично, если n<2^11, то
max(2^n - 2^k) = 2^10 - 2^1 =1022 (max - максимально возможное значение)
Это так же не укладывается в интервал: [1901; 2000]
Таким образом, n = 2^11, а для k тогда остается только два варианта:
k= 6; 7
То есть существует только два таких года:
1) 2^11 - 2^6 = 2048 - 64 = 1984
2) 2^11 - 2^7 = 2048 - 128 = 1920
Если не помните наизусть, приложил табличку степеней двоек.
2sin2x + 3sinxcosx - 3cos2x = 1;
Представим 1 в виде суммы по основному тригонометрическому тождеству:
sin2x + 3cosxsinx - 3cos2x = sin2x + cos2x;
Приведем подобные:
sin2x + 3cosxsinx - 4cos2x = 0;
Разделим каждый член уравнения на cos2x:
tg2x + 3tgx - 4 = 0;
Произведем замену и решим квадратное уравнение:
t2 + 3t - 4 = 0;
D = 9 + 16 = 25;
t = (-3 +- 5)/2;
t1 = -4, t2 = 1;
Сделаем обратную замену:
tgx = 1; x = pi/4 + pin, n из Z;
tgx = -4; x = arctg(-4) pin, n из Z.
ответ: pi/4 + pin, n из Z; arctg(-4) pin, n из Z.
Объяснение:
Оцени!