у мирбека было 10 руб. он купил Х карандашей по 0.6 руб за штуку. Обозначив число рублей, оставшихся у мальчика, буквой У, задайте формулой зависимости У от Х
y = 2x^3 - 3x^2 - 12x + 1 – это кубическая функция, проверим имеет ли она максимумы и минимумы, для этого найдем производную и приравняв у нулю, найдем промежутки возрастания и убывания. Если они имеются.
y = (2x^3 - 3x^2 - 12x + 1)’ = 6x^2 – 6x – 12;
6x^2 – 6x – 12 = 0;
x^2 – x – 2 = 0;
D = b^2 – 4ac;
D = (- 1)^2 – 4 * 1 * (- 2) = 1 + 8 = 9; √D = 3;
x = (- b ± √D)/(2a);
x1 = (1 + 3)/2 = 4/2 = 2;
x2 = (1 - 3)/2 = - 2/2 = - 1
Точки с абсциссами (- 1) и 2 – являются экстремумами, но ни одна из них не принадлежит промежутку [4; 5]. Значит наибольшее значение функции будет либо в точке 4, либо в точке 5.
Команде не удасться выйти в следующий круг соревнований при следующих событиях:
1 игра - проигрыш, 2 игра - выигрыш1 игра - выигрыш, 2 игра - проигрыш1 игра - проигрыш, 2 игра - проигрыш1 игра - ничья, 2 игра - ничья1 игра - ничья, 2 игра - проигрыш1 игра - проигрыш, 2 игра - ничья
Р(1) = Р(П) * Р(В) = 0,45 * 0,45 = 0,2025
Р(2) = Р(В) * Р(П) = 0,45 * 0,45 = 0,2025
Р(3) = Р(П) * Р(П) = 0,45 * 0,45 = 0,2025
Р(4) = Р(Н) * Р(Н) = 0,1 * 0,1 = 0,01
Р(5) = Р(Н) * Р(П) = 0,1 * 0,45 = 0,045
Р(6) = Р(П) * Р(Н) = 0,45 * 0,1 = 0,045
Вероятность того, что команде не удастся выйти в следующий круг соревнований:
y = 2x^3 - 3x^2 - 12x + 1 – это кубическая функция, проверим имеет ли она максимумы и минимумы, для этого найдем производную и приравняв у нулю, найдем промежутки возрастания и убывания. Если они имеются.
y = (2x^3 - 3x^2 - 12x + 1)’ = 6x^2 – 6x – 12;
6x^2 – 6x – 12 = 0;
x^2 – x – 2 = 0;
D = b^2 – 4ac;
D = (- 1)^2 – 4 * 1 * (- 2) = 1 + 8 = 9; √D = 3;
x = (- b ± √D)/(2a);
x1 = (1 + 3)/2 = 4/2 = 2;
x2 = (1 - 3)/2 = - 2/2 = - 1
Точки с абсциссами (- 1) и 2 – являются экстремумами, но ни одна из них не принадлежит промежутку [4; 5]. Значит наибольшее значение функции будет либо в точке 4, либо в точке 5.
y(4) = 2 * 4^3 – 3 * 4^2 – 12 * 4 + 1 = 128 – 48 – 48 + 1 = 129 – 96 = 33
y(5) = 2 * 5^3 – 3 * 5^2 – 12 * 5 + 1 = 250 – 75 – 60 + 1 = 251 – 135 = 116 – это наибольшее значение функции на интервале [4; 5].
ответ. max [4; 5] y = у(5) = 116.
Количество игр: 2
:
Выигрыш (В) - 3 очка
Ничья (Н) - 1 очко
Проигрыш (П) - 0 очков
P(Н) = 0,1
Так как общая вероятность равна 1 или 100%, то:
P(В+П) = 1 - 0,1 = 0,9
По условию Р(В) = Р(П), тогда:
Р(В) = P(В+П) /2 = 0,9 / 2 = 0, 45
Р(П) = P(В+П) /2 = 0,9 / 2 = 0, 45
Команде не удасться выйти в следующий круг соревнований при следующих событиях:
1 игра - проигрыш, 2 игра - выигрыш1 игра - выигрыш, 2 игра - проигрыш1 игра - проигрыш, 2 игра - проигрыш1 игра - ничья, 2 игра - ничья1 игра - ничья, 2 игра - проигрыш1 игра - проигрыш, 2 игра - ничьяР(1) = Р(П) * Р(В) = 0,45 * 0,45 = 0,2025
Р(2) = Р(В) * Р(П) = 0,45 * 0,45 = 0,2025
Р(3) = Р(П) * Р(П) = 0,45 * 0,45 = 0,2025
Р(4) = Р(Н) * Р(Н) = 0,1 * 0,1 = 0,01
Р(5) = Р(Н) * Р(П) = 0,1 * 0,45 = 0,045
Р(6) = Р(П) * Р(Н) = 0,45 * 0,1 = 0,045
Вероятность того, что команде не удастся выйти в следующий круг соревнований:
Р = Р(1) + Р(2) + Р(3) + Р(4) + Р(5) + Р(6) = 0,2025 + 0,2025 + 0,2025 + 0,01 + 0,045 + 0,045 = 0,7075 = 0,71