У Олега есть четыре карточки, на каждой из которых с одной и с другой стороны написаны натуральные числа (всего написано 8 чисел). Он рассматривает всевозможные четвёрки чисел, где первое число написано на первой карточке, второе — на второй, третье — на третьей, четвёртое — на четвёртой. Затем для каждой четвёрки он выписывает произведение чисел к себе в блокнот. Чему равна сумма восьми чисел на карточках, если сумма шестнадцати чисел в блокноте Олега равна ДО 20:00!
1. Каким бы ни было число а и натуральные показатели степеней m и n, всегда
(a^m) * (a^n) = a^(m + n)
Например: a³ * a⁶ = a³⁺⁶ = a⁹
2.
1) Как можно возвести в степень произведение чисел, степень числа?
а) n-я степень произведения равна произведению n-ых степеней множителей.
Например: (2*3)⁴ =(2⁴) * (3⁴)
б) При возведении степени в степень, нужно показатели степеней перемножить, а основание оставить прежним.
Например: (2³)⁴ = 2¹²;
2) Запишите результат вычислений в виде а*(10^n), где 1 ≤ a < 10:
a) (5*10⁴)³ =5³ * 10¹² = 125*10¹²
б) (7*10⁵)³*(2*10⁶)² = 7³ * 10¹⁵ 2² * 10¹² = 343 * 4*10²⁷ = 1372*10²⁷
3. Замените выражение (p²)⁵*(p⁴)³ = p²*⁵ * p⁴*³ = p¹⁰*p¹² =
= p¹⁰⁺¹² = p²² степенью с основанием p, указывая, какие свойства степени вы применяете.
4. Вычислите
[(2⁵)² * 3⁸)] / (6⁶) = [(2⁵*² * 3⁸] / (2⁶*3⁶) = (2¹⁰ * 3⁸) / (2⁶ * 3⁶) = 2¹⁰⁻⁶ * 3⁸⁻⁶ = 2⁴ * 3² = 16*9 = 144
В двудольном графе, который содержит n вершин в одной доле и m вершин в другой, наибольшее количество рёбер будет тогда, когда каждая вершина из одной доли будет соединена с каждой вершиной в другой доле.
В этом случае количество ребёр будет равно n*m
В нашей задаче известно, что граф содержит 100 вершин.
Пусть количество вершин в одной доле равно n. Тогда в другой доле будет 100 - n вершин.
Количество ребёр тогда равно n(100 - n)
n(100 - n) = -n² + 100n
График полученного выражения - парабола, ветви которой направлены вниз (т.к. коэффициент при n² меньше 0)
Следовательно наибольшее значения будет в вершине данной параболы
Тогда количество рёбер равно 50(100 - 50) = 2500