У парку росте 10 беріз. Кількість каштанів у цьому парку становить 45% кількості беріз або 6/11 кількість дубів. Скільки кашатнів і дубів росте у парку?
= (-1) * (1+2+3+4+5+6+...+n) = (по формуле для арифметической прогрессии с разностью = 1 и числом членов = n) = (-1)*n*(n+1)/2 =
= -n(n+1)/2 - формула суммы для четного n.
Для нечетного n: S = (-1)* (1+2+3+...+ n-1) + n² = [То есть, к примеру, мы фиксируем сумму не на слагаемом типа -130², как в первом случае, а на слагаемом типа +131² и для данного места находим значение суммы ряда] = (-1)* (1+n-1)*(n-1)/2 + n² = -n(n-1)/2 + n² = (2n² - n² + n)/2 =
= (n²+n)/2 = n(n+1)/2.
В общем случае можно записать S(n) = [(-1)^(n-1)] * n(n+1)/2, n є N
Размах ряда чисел - это разность между наибольшим и наименьшим из этих чисел.
Среднее арифметическое ряда чисел - это отношение суммы этих чисел на число слагаемых.
Мода ряда чисел - это число, которое встречается в этом ряду чаще других.
Медиана ряда чисел - это число, стоящее посередине упорядоченного по возрастанию ряда чисел (в случае, если количество чисел нечетное).
Медиана ряда чисел - это полусумма двух стоящих посередине чисел упорядоченного по возрастанию ряда (в случае, если количество чисел четное).
Задание 1.
Размах: 47-25=22;
Среднее арифметическое: \frac{39+33+45+25+33+40+47+38+34+33+40+44+45+32+27}{15}= \frac{555}{15}=37
15
39+33+45+25+33+40+47+38+34+33+40+44+45+32+27
=
15
555
=37 ;
Мода: 33;
Медиана: 38.
Задание 2.
Размах: 44-30=14;
Среднее арифметическое: \frac{36+30+35+36+36+38+40+41+44+43+36+41}{12}= \frac{456}{12}=38
12
36+30+35+36+36+38+40+41+44+43+36+41
=
12
456
=38 ;
Мода: 36;
Медиана: \frac{38+40}{2}=39
2
38+40
=39 .
Задание 3.
Размах: 46-24=22;
Среднее арифметическое: \frac{34+24+39+36+34+39+38+46+38+34+46+41+43+40}{14}= \frac{532}{14}=38
14
34+24+39+36+34+39+38+46+38+34+46+41+43+40
=
14
532
=38 ;
Мода: 34;
Медиана: \frac{38+46}{2}=42
2
38+46
=42 .
Задание 4.
Размах: 58-24=34;
Среднее арифметическое: \frac{39+45+35+24+35+38+58+34+38+35+40+42+45+36+56}{15}= \frac{600}{15}=40
15
39+45+35+24+35+38+58+34+38+35+40+42+45+36+56
=
15
600
=40 ;
Мода: 35;
Медиана: 34.
ответ: 1² - 2² + 3² - 4²+ 5² - 6²+ ... = (1-2)(1+2) + (3-4)(3+4)+ (5-6)(5+6) + ... =
= (-1) * (1+2+3+4+5+6+...+n) = (по формуле для арифметической прогрессии с разностью = 1 и числом членов = n) = (-1)*n*(n+1)/2 =
= -n(n+1)/2 - формула суммы для четного n.
Для нечетного n: S = (-1)* (1+2+3+...+ n-1) + n² = [То есть, к примеру, мы фиксируем сумму не на слагаемом типа -130², как в первом случае, а на слагаемом типа +131² и для данного места находим значение суммы ряда] = (-1)* (1+n-1)*(n-1)/2 + n² = -n(n-1)/2 + n² = (2n² - n² + n)/2 =
= (n²+n)/2 = n(n+1)/2.
В общем случае можно записать S(n) = [(-1)^(n-1)] * n(n+1)/2, n є N