У Севы открыток больше, чем у Коли в 6 раз Если Сева отдаст Коле 15 открыток, то у них открыток станет поровну. Сколько открыток было первоначально у Севы и у Коли?
Умножение чисел с одинаковыми основаниями, но разными по показателям степеней происходит так: основание остается прежним, а показатели степеней складываются, т.е. икс в минус седьмой умножить на икс в девятой степени будет равно иксу во второй степени (т.к. -7 + 9 = 2) Деление чисел с одинаковыми основаниями, но разными показателями происходит подобным образом, только показатели степеней отнимаются, следовательно, икс во второй степени разделить на икс в четвертой степени будет равно иксу в минус 2 ( т. к. 2-4=-2) ответ: икс в минус второй степени
1) Шаблон y=x²
Вершина в точке (2;-3)
Нули функции
(x-2)²-3=0 ⇒
(x-2)²=3
x-2= -√3 или х-2=√3
х=2-√3 или х=2+√3
2) Шаблон y=x²
Вершина в точке (-2;-1)
Нули функции
(x+2)²-1=0 ⇒
(x+2)²=1
x+2= -1 или х+2=1
х=-3 или х=-1
3) Шаблон y=x²
Вершина в точке (2,5;-3,4)
Нули функции
(x-2,5)²-3,4=0 ⇒
(x-2,5)²=3,4
x-2,5= -√3,4 или x-2,5=√3,4
х= 2,5 -√3,4 или х=2,5 +√3,4
4)Шаблон y= - x²
Вершина в точке (1;4)
Нули функции
-(x-1)²+4=0 ⇒
(x-1)²=4
x-1= -2 или x-1=2
х= -1 или х=3
5)Шаблон y= - x²
Вершина в точке (-3;-3)
Нули функции
-(x+3)²-3=0 ⇒
(x+3)²=-3
уравнение не имеет корней.
Парабола не пересекает ось Ох
6)Шаблон y= - x²
Вершина в точке (3,2;2,4)
Нули функции
-(x-3,2)²+2,4=0 ⇒
(x-3,2)²=2,4
x-3,2= - √2,4 или x-3,2= √2,4
x= 3,2 - √2,4 или x = 3,2+ √2,4
Деление чисел с одинаковыми основаниями, но разными показателями происходит подобным образом, только показатели степеней отнимаются, следовательно, икс во второй степени разделить на икс в четвертой степени будет равно иксу в минус 2 ( т. к. 2-4=-2)
ответ: икс в минус второй степени