У скриньці лежать чорні і білі кульки, причому кількість чорних кульок дорівнює a, а кількість білих на одну менша від кількості чорних. Яка ймовірність того, що що одна навмання взята зі скриньки кулька буде білою?
D = -16 < 0, следовательно уравнение не имеет действительных решений (график функции не пересекает ось Ох), график полностью находится в одной полуплоскости.
Рассмотрим значение коэффициента при старшей степени:
ka² - ba + c
k = 1 > 0
Т.к. коэффициент при старшей степени положительный, ветви графика (парабола) направлена вверх.
График находится выше оси Ох, ветви направлены вверх, следовательно выражение a² - 12a + 40 при любом значении a принимает положительные значения
Объяснение:
Рассмотрим уравнение
a² - 12a + 40 = 0
D = 12² - 4*40 = 144 - 160 = -16
D = -16 < 0, следовательно уравнение не имеет действительных решений (график функции не пересекает ось Ох), график полностью находится в одной полуплоскости.
Рассмотрим значение коэффициента при старшей степени:
ka² - ba + c
k = 1 > 0
Т.к. коэффициент при старшей степени положительный, ветви графика (парабола) направлена вверх.
График находится выше оси Ох, ветви направлены вверх, следовательно выражение a² - 12a + 40 при любом значении a принимает положительные значения
Нужно сравнить длины сторон треугольников
Для этого находим их по формуле расстояния между двумя точками
d=√((x2-x1)^2+(y2-y1)^2)
a)
AB=√((2+2)^2+(-1+1)^2)=√(16)=4
BC=√((-2-2)^2+(1+1)^2)=√(16+4)=√20
CA=√((-2+2)^2+(-1-1)^2)=√(4)=2
Стороны не равны, но сторона BC больше остальных, поэтому проверим выполняется ли на них теорема пифагора
(√20)^2=2^2+4^2
20=4+16
20=20
Теорема Пифагора выполняется, значит треугольник прямоугольный.
б)
AB=√((2+2)^2+(-2+2)^2)=√(16)=4
BC=√((0-2)^2+(1+2)^2)=√(4+9)=√13
CA=√((-2-0)^2+(-2-1)^2)=√(4+9)=√13
т.к. равны 2 стороны, то треугольник равнобедренный.