У Толи в правом кормане было в 3 раза больше конфет, чем в левом. Когда Толя из правого кормана переложил 2 конфеты в левый, то в нем осталось в 2,5 раза больше конфет чем в левом. Сколько изначально было конфет в правом кормане? Решите с уровнения
Пишу ход своих мыслей: Если скорость одного велосипедиста больше на 3 км/ч., но известно, что один велосипедист преодолевает этот путь на один час быстрее, тогда: 1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже. 2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее. 3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее 4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
sin^2t+cos^2t=1\\cos^2t=1-sin^2t\\cost=\pm\sqrt{1-sin^2t}
Т.к. t∈(π/2;π) - 2 четверть, в ней косинус отрицательный. значит перед корнем будет минус.
cost=-\sqrt{1-(\frac{5}{13})^2}=-\sqrt{\frac{169}{169}-\frac{25}{169}}=-\sqrt{\frac{144}{169}}=-\frac{12}{13}
sin2t=2sint*cost=2*\frac{5}{13}*(-\frac{12}{13})=-\frac{120}{169}cos2t=cos^2t-sin^2t=(-\frac{12}{13})^2-(\frac{5}{13})^2=\frac{144}{169}-\frac{25}{169}=\frac{119}{169}tg2t=\frac{sin2t}{cos2t}=\frac{-\frac{120}{169}}{\frac{119}{169}}=-\frac{120}{169}*\frac{169}{119}=-\frac{120}{119}ctg2t=\frac{1}{tg2t}=\frac{1}{-\frac{120}{119}}=-\frac{119}{120}
1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже.
2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее.
3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее
4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже
ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.