У трикутнику проведено середні лінії. Периметри паралелограмів, що утворилися при цьому, дорівнюють 34 дм, 36 дм і 38 дм. На скільки більший периметр заданого трикутника від периметра трикутника, який утворюють середні лінії?
n₂= (-1-23)/2= -12 – не является корнем поскольку отрицательный , следовательно
n= 11 , а это значит , что число 132 является 11 членом этой прогрессии
Задание 2
а)
xₙ=n(n-1)
если n=1, значит
х₁=1*(1-1)=0
если n=2 , значит
х₂=2*(2-1)=2
если n=3 ,значит
х₃=3(3-1)=6
х₂₀= 20*(20-1)= 380
б)
n*(n-1)=110
n²-n-110=0
D=1² -4*(-110)=441
√D= 21
n₁=(1-21)/2=-10 - не подходит, т.к. номер не может быть отрицательным
n₂=(1+21)/2=11
значит 11 член этой последовательности равен 110
Задание 3
Определения :
"Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с постоянным для этой последовательности числом d , называется арифметической прогрессией. "
"Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на постоянное для этой последовательности число q , называется геометрической прогрессией"
Объяснение:
Задание 1
а)
aₙ=n( n+1)
если n=1, то
а₁= 1*(1+1)= 1*2=2
если n=2, то
а₂= 2*(2+1)= 2*3=6
если n=3, то
а₃= 3*(3+1)=3*4=12
а₁₀₀= 100*(100+1)= 100* 101= 10100
б) Является ли 132 членом этой прогрессии?
n*(n+1)= 132
n²+n-132=0
D= 1²-4*(-132)= 1+528=529
√D= 23
n₁= (-1+23)/2= 11
n₂= (-1-23)/2= -12 – не является корнем поскольку отрицательный , следовательно
n= 11 , а это значит , что число 132 является 11 членом этой прогрессии
Задание 2
а)
xₙ=n(n-1)
если n=1, значит
х₁=1*(1-1)=0
если n=2 , значит
х₂=2*(2-1)=2
если n=3 ,значит
х₃=3(3-1)=6
х₂₀= 20*(20-1)= 380
б)
n*(n-1)=110
n²-n-110=0
D=1² -4*(-110)=441
√D= 21
n₁=(1-21)/2=-10 - не подходит, т.к. номер не может быть отрицательным
n₂=(1+21)/2=11
значит 11 член этой последовательности равен 110
Задание 3
Определения :
"Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с постоянным для этой последовательности числом d , называется арифметической прогрессией. "
"Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на постоянное для этой последовательности число q , называется геометрической прогрессией"
Поскольку
0-4=-4
4-8=-4
8-12=-4
Значит d=-4
И это арифметическая прогрессия
Продолжение будет
0+(-4)= -4
-4+(-4)=-8
-8+(-4)= -12
(xₙ):12,8,4;0;-4;-8 :-12
Поскольку :
-16 : (-32) = ½
-8 : (-16)= ½
-4 : (-8)= ½
Значит
q=1/2. И это геометрическая прогрессия.
продолжение :
(yₙ):-32,-16,-8;-4;-2;-1;.
б) bₙ = b₁ * qⁿ⁻¹
b₁₂=-32(•1/2)¹²⁻¹=-32•(1/2)¹¹= -2⁵* (1/2)¹¹= (-1/2)⁶= -1/64.
Задание 4
Решаем по формуле первых n членов арифметической прогрессии.
a₁=100 руб
d=50 руб
n= 10 недель
Sn=( (2a₁+d*(n-1))/2)*n
S₁₀=((2*100+50*9)/2)*10=650/2*10
S₁₀=3250 руб.
ответ: через 10 недель сумма составит 3250 руб.
Задание 5
Первое двузначное число , которое делится на 3 это 12 , значит первый член арифметической прогрессии будет а₁=12.
Последнее двузначное число , которое делится на 3 это 99 , значит
аₙ = 99
n=( (99-12)/3)+1=30
S₃₀=((a₁+a₃₀)/2)*n=(12+99)/2*30=1665
Задание 6
По условию :
q= -3
S₄=-40
Из формулы первых n членов геометрической прогрессии, найдем значение первого члена ряда b₁.
Sn= b₁ * (1 - qⁿ)/(1 - q).
b₁* (1 - (- 3)⁴)/(1 - (- 3)) = - 40.
b₁ = (- 40) : (1 - 81)/(1 + 3) = - 40 * 4/(- 80) = 2.
Найдём сумму первых восьми членов ряда.
S₈= b₁* (1 - (- 3)⁸)/(1 - (- 3)) = 2 * (1 - 6561)/4 = - 6560/2 = - 3280.
ответ: S₈ = - 3280.
Задание 7
По формуле сложных процентов
S=k*(1+(p/100))ⁿ
где
n- число периодов
к- первоначальная сумма
р- процентная ставка
S= 25000*(1+0,02)⁶=28154,06 руб.
Задание 8
По формуле сложных процентов
S=k*(1- (p/100))ⁿ
где
n- число периодов
к- первоначальная сумма
р- процентная ставка
Число периодов , в данном случае будет :
n= 10 :2 = 5 , поскольку снижение цены происходило 1 раз в два года
S= 400000*(1-0,2)⁵= 131072 руб.
iPhone iPhone iPhone iPhone OS Android iPhone OS Android iPhone OS iPhone iPhone OS iPhone OS iPhone OS iPhone iPhone OS iPhone iPhone OS OS iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone iPhone