3) y=2x-2 Задаем два значения Х и получаем два значения У. х=0, у=-2 х=2, у=2
На координатной плоскости отмечаем две точки (0;-2) и (2;2) и получаем прямую. Чтобы определить принадлежность точки А(-25;-52) к графику подставляем значение Х в функцию. Если У будет равно -52, то точка принадлежит графику, если не равно -52, то не принадлежит. Т.е. у=2*(-25)-2=-50-2=-52, значит точка А принадлежит графику функции
доп множитель для первой дроби 5, для второй 3, а для двойки 15
получаем
5х+40-3х+6=30
2х= -10
х= -5
2) {x=5+2y, 3(5+2y)+5y=26
{x=5+2y, 15+6y+5y=26
{x=5+2y, 11y=11
{y=1, x=7
3) y=2x-2 Задаем два значения Х и получаем два значения У.
х=0, у=-2
х=2, у=2
На координатной плоскости отмечаем две точки (0;-2) и (2;2) и получаем прямую.
Чтобы определить принадлежность точки А(-25;-52) к графику подставляем значение Х в функцию. Если У будет равно -52, то точка принадлежит графику, если не равно -52, то не принадлежит.
Т.е. у=2*(-25)-2=-50-2=-52, значит точка А принадлежит графику функции
ответ:
d=b^2-4ac=(-1)^2-4*1*(-72)=1+288=\sqrt{289}
289
=17
х1=\frac{-b- \sqrt{d} }{2a} = \frac{1-17}{2} = \frac{-16}{2} =-8
2a
−b−
d
=
2
1−17
=
2
−16
=−8
х2=\frac{-b+ \sqrt{d} }{2a} = \frac{1+17}{2} = \frac{18}{2} = 9
2a
−b+
d
=
2
1+17
=
2
18
=9
ответ: -8 и 9
d=b^2-4ac=7^2-4*(-4)*(-3)=49-48=\sqrt{1} =1
1
=1
х1=\frac{-b- \sqrt{d} }{2a} = \frac{-7-1}{2*(-4)} = \frac{-8}{-8} =1
2a
−b−
d
=
2∗(−4)
−7−1
=
−8
−8
=1
х2=\frac{-b+ \sqrt{d} }{2a} = \frac{-7+1}{(-8)} = \frac{-6}{-8} =0,75
2a
−b+
d
=
(−8)
−7+1
=
−8
−6
=0,75