Пусть скорость пешком v₁ = х км/ч, тогда скорость на велосипеде v₂ = х + 6 км/ч Время при движении пешком t₁ = 45 мин = 3/4 ч Время на велосипеде t₂ = 20 мин = 1/3 ч Расстояние до школы S = v₁t₁ = v₂t₂
Тогда: v₁t₁ = v₂t₂ x*3/4 = (x + 6)*1/3 3/4 x = 1/3 x + 2 9/12 x - 4/12 x = 2 5/12 x = 2 x = 2 * 12/5 x = 24/5 x = 4,8 (км/ч) - скорость пешком. х + 6 = 10,8 (км/ч) - скорость на велосипеде
7^2 * 7^х - 14 * 7^х =5
7^х ( 7^2 - 14 ) =5
7^х ( 49-14)=5
7^х * 35 =5
7^х = 5/35
7^х= 1/7
7^х= 7^ -1
Х= - 1
2) 3 ^ Х+1 - 5 * 3^ х-1 =36
3 * 3^ х - 5 * 3^х * 1/3 =36
3^х ( 3 - 5* 1/3) =36
3^х ( 3 - 5/3)=36
3^х * 1 1/3 =36
3^х= 36 : 4/3
3^х = 27
3^х= 3^3
Х=3
3) 5^х+2 - 4 * 5^х+1 + 4 * 5^х-1 =29
5 ^2 * 5^х - 4*5* 5^х +4 * 1/5 * 5^х =29
5^х ( 25 - 20 + 4/5 ) =29
5^х * 5 4/5 =29
5^х = 29 : 29/5
5^х=5
Х=1
4) 5* 2^х - 7 * 2^х-1 + 9 *2^х-2=60
5 * 2^х - 7 * 1/2 * 2^х + 9 * 1/4 * 2^х =60
2^х ( 5 - 7/2 + 9/4 ) =60
2^х ( 5 - 3 1/2 + 2 1/4 ) =60
2^х * 3 3/4 =60
2^х = 60 : 15/4
2^х = 16
2^х = 2^4
Х=4
тогда скорость на велосипеде v₂ = х + 6 км/ч
Время при движении пешком t₁ = 45 мин = 3/4 ч
Время на велосипеде t₂ = 20 мин = 1/3 ч
Расстояние до школы S = v₁t₁ = v₂t₂
Тогда: v₁t₁ = v₂t₂
x*3/4 = (x + 6)*1/3
3/4 x = 1/3 x + 2
9/12 x - 4/12 x = 2
5/12 x = 2
x = 2 * 12/5
x = 24/5
x = 4,8 (км/ч) - скорость пешком.
х + 6 = 10,8 (км/ч) - скорость на велосипеде
S = 4,8*3/4 = 10,8*1/3 = 3,6 (км)
ответ: 3,6 км