где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
б) если рассмотреть равенство: x² + (y+1)² = 4
то график этого уравнения --это окружность с центром в (0; -1) радиуса 2.
уравнение окружности с центром (x₀; y₀) радиуса R: (х-х₀)² + (y-y₀)² = R²
в задании знак неравенства "больше", т.е. это часть плоскости ВНЕ круга, включая границу (окружность)
например: точка (2;-3)
2² + (-3+1)² ≥ 4 верно...
а) неравенство с модулем со знаком "меньше" равносильно двойному неравенству: -2 < y-x-1 < 2 (прибавим 1)
-1 < y-x < 3
двойное неравенство равносильно системе неравенств (пересечению промежутков):
{y-x<3
{y-x>-1
или
{ y < x+3 (часть плоскости НИЖЕ (знак "<") прямой у=х+3)
{ y > x-1 (часть плоскости ВЫШЕ (знак ">") прямой у=x-1)
это полоса между параллельными прямыми...
и всегда можно проверить...
например, точка (2;-1) не принадлежит этому множеству...
|-1-2-1| < 2 неверно
точка (0;0) принадлежит этому множеству...
|0-0-1| < 2 верно
Объяснение:
Решение квадратного неравенства
Неравенство вида
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.