В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
jookyun
jookyun
01.03.2020 01:00 •  Алгебра

У ВЫРАЖЕНИЕ И НАЙДИТЕ ЕГО ЗНАЧЕНИЕ ПРИ c=-1/6:(3-c)^2-c(c-9)​

Показать ответ
Ответ:
влад2305
влад2305
20.11.2022 15:03
Подходят такие пары целых чисел: (0; 0); (0; 1); (0; 2); (0; 3); (0; 4); (0; 5); (0; 6); (0; 7); (0; 8) - 9 пар. (1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (1; 7) - 7 пар. (2; 2); (2; 3); (2; 4); (2; 5); (2; 6); (2; 7) - 6 пар. (3; 3); (3; 4); (3; 5); (3; 6); (3; 7) - 5 пар. (4; 4); (4; 5); (4; 6) - 3 пары (5; 5); (5; 6) - 2 пары всё. всего 9 + 7 + 6 + 5 + 3 + 2 = 32 пары. из них сумму меньше 8 имеют 20 пар. вероятность равна 20/32 = 5/8
0,0(0 оценок)
Ответ:
Rımma7
Rımma7
20.11.2022 15:03

Практически очевидно, что если сумма квадратов двух положительных чисел меньше 100, то сумма самих этих чисел не может быть больше 64. Докажем это строго.

Первый

Пусть сумма квадратов двух положительных чисел х и у равна 100.

x^2+y^2=100

Составим выражение для суммы чисел х и у и найдем при каком условии оно принимает максимальное значение и чему равно это значение.

S=x+y

Выразим у из первого условия: y=\sqrt{100-x^2}

S=x+\sqrt{100-x^2}

Найдем производную:

S'=1+\dfrac{1}{2\sqrt{100-x^2}} \cdot(100-x^2)'=1-\dfrac{2x}{2\sqrt{100-x^2}} =1-\dfrac{x}{\sqrt{100-x^2}}

Найдем точки экстремума:

1-\dfrac{x}{\sqrt{100-x^2}} =0

\dfrac{x}{\sqrt{100-x^2}} =1

x=\sqrt{100-x^2}

x^2=100-x^2

2x^2=100

x^2=50

x=\pm\sqrt{50}

x=\pm5\sqrt{2}

Учитывая, что х - положительное:

x=5\sqrt{2} - точка максимума

y=\sqrt{100-(5\sqrt{2}) ^2}=\sqrt{100-25\cdot2}=\sqrt{50} =5\sqrt{2}

Максимум достигается при x=y=5\sqrt{2} и он равен:

S_{\max}=5\sqrt{2}+5\sqrt{2}=10\sqrt{2}

Итак, даже при условии, что сумма квадратов равна 100, сама сумма не может быть больше 10\sqrt{2}. По условию сумма квадратов меньше 100, значит сумма самих чисел меньше 10\sqrt{2} и точно не может быть больше 64. Значит, искомая вероятность равна 0.

Второй

Графически решить систему \begin{cases} x0,\,\,y0 \\ x^2+y^264 \end{cases} и найти отношение площади фигуры, соответствующей решению этой системы, к площади, являющейся решением системы \begin{cases} x0,\,\,y0 \\ x^2+y^2 (четверть окружности радиуса 10). Однако, первая система решений иметь не будет, значит вероятность равна 0.

ответ: 0

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота