У выражение (x+6) (x+5). У выражение (3b-2)(5-2b)+6b Разложите на множители (а-3b) (a+2b)+5 а (а+2b). Разложить на множители 8m(a-3)+n(a-3). Решить уравнение 2x(x-8)=(x+1)(2x-3)
Воспользуемся методом неопределенных коэффициентов. данный многочлен может расложится на произведения двух квадратных трехчленов: x^4-7x^2+1=(x^2+ax+b)(x^2+cx+d) (x^2+ax+b)(x^2+cx+d)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd=x^4+(cx^3+ax^3)+(dx^2+acx^2+bx^2)+(adx+bcx)+bd=x^4+(c+a)*x^3+(d+ac+b)*x^2+(ad+bc)*x+bd составляем систему: c+a=0 d+ac+b=-7 ad+bc=0 bd=1 решаем: так как коэффиценты целые, то в равенстве bd=1 либо b=-1 и d=-1 либо b=1 и d=1 подставляем: c+a=0 -1+ac-1=-7 -a-c=0 c=-a -1-a^2-1=-7 -a^2=-7+2 a^2=5 a - нецелое, значит эти значения b и d не подходят. проверяем 2 вариант: c+a=0 1+ac+1=-7 a+c=0 c=-a 1-a^2+1=-7 -a^2=-7-2 -a^2=-9 a^2=9 a1=3; a2=-3 c1=-3; c2=3 получим: x^4-7x^2+1=(x^2+3x+1)(x^2-3x+1) или x^4-7x^2+1=(x^2-3x+1)(x^2+3x+1) ответ: x^4-7x^2+1=(x^2+3x+1)(x^2-3x+1)
ответ: Очень специфическое задание , где откопали его?
x^8 +98*x^4*y^4 +y^8 = (x^4 -4*x^3*y+8*x^2*y^2 +4*y^3*x+y^4)*
*(x^4 +4*x^3*y+8*x^2*y^2 -4*y^3*x+y^4)
Объяснение:
x^8 +98*x^4*y^4 +y^8 = y^8* ( (x/y)^8 +98*(x/y)^4 +1)
Пусть для удобства : x/y = t
t^8+98*t^4 +1 = ( t^8 +64*t^4 +1 ) +34*t^4
Используем формулу :
(a+b+c)^2 = a^2+b^2+c^2+2*ab+2*ac +2*bc
a^2+b^2+c^2 = (a+b+c)^2 - (2*ab+2*ac +2*bc)
t^8 +64*t^4+1 +34*t^4= (t^4)^2 +(8*t^2)^2 +1^2 + 34*t^4=
= (t^4+8*t^2+1)^2 -(16*t^6 +2*t^4 +16*t^2 )+34*t^4 =
= (t^4+8*t^2+1)^2 - (16*t^6 -32*t^4 +16*t^2) =
= (t^4+8*t^2+1)^2 - ( 4t^3 -4t)^2 = {разность квадратов} =
=(t^4+8*t^2 +1 -4*t^3+4t)*(t^4+8*t^2 +1 +4*t^3-4t) =
=(t^4 -4*t^3+8*t^2 +4*t+1)*(t^4 +4*t^3+8*t^2 -4*t+1)
Учитывая, что t=x/y
x^8 +98*x^4*y^4 +y^8 =
=y^8 * (t^4 -4*t^3+8*t^2 +4*t+1)*(t^4 +4*t^3+8*t^2 -4*t+1) =
={Умножим каждую скобку на y^4 } = =(x^4 -4*x^3*y+8*x^2*y^2 +4*y^3*x+y^4)*
*(x^4 +4*x^3*y+8*x^2*y^2 -4*y^3*x+y^4)
данный многочлен может расложится на произведения двух квадратных трехчленов:
x^4-7x^2+1=(x^2+ax+b)(x^2+cx+d)
(x^2+ax+b)(x^2+cx+d)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd=x^4+(cx^3+ax^3)+(dx^2+acx^2+bx^2)+(adx+bcx)+bd=x^4+(c+a)*x^3+(d+ac+b)*x^2+(ad+bc)*x+bd
составляем систему:
c+a=0
d+ac+b=-7
ad+bc=0
bd=1
решаем:
так как коэффиценты целые, то в равенстве bd=1 либо b=-1 и d=-1 либо b=1 и d=1
подставляем:
c+a=0
-1+ac-1=-7
-a-c=0
c=-a
-1-a^2-1=-7
-a^2=-7+2
a^2=5
a - нецелое, значит эти значения b и d не подходят. проверяем 2 вариант:
c+a=0
1+ac+1=-7
a+c=0
c=-a
1-a^2+1=-7
-a^2=-7-2
-a^2=-9
a^2=9
a1=3; a2=-3
c1=-3; c2=3
получим:
x^4-7x^2+1=(x^2+3x+1)(x^2-3x+1)
или
x^4-7x^2+1=(x^2-3x+1)(x^2+3x+1)
ответ: x^4-7x^2+1=(x^2+3x+1)(x^2-3x+1)