Мы находимся в условиях "испытаний Бернулли". Случайная величина Х - число возвращённых пар обуви - может принимать значения от 0 до 6. Найдём соответствующие вероятности [символом C(n,k)] обозначено число сочетаний из n по k]:
p0=(1-0,3)⁶=0,117649;
p1=C(6,1)*(1-0,3)⁵*(0,3)¹=0,302526;
p2=C(6,2)*(1-0,3)⁴*(0,3)²=0,324135;
p3=C(6,3)*(1-0,3)³*(0,3)³=0,18522;
p4=C(6,4)*(1-0,3)²*(0,3)⁴=0,059535;
p5=C(6,5)*(1-0,3)¹*(0,3)⁵=0,010206;
p6=(0,3)⁶=0,000729
Проверка: p0+p1+p2+p3+p4+p5+p6=1 - значит, вероятности найдены верно. Составляем ряд распределения случайной величины Х:
xi 0 1 2 3 4 5 6
pi 0,117649 0,302526 0,324135 0,18522 0,059535 0,010206 0,000729
Математическое ожидание M[X]=∑xi*pi=1,8
Дисперсия D[X]=∑(xi-M[X])²*pi=1,26
Среднее квадратическое отклонение σ[X]=√D[X]≈1,12
Функция распределения F(x) задаётся условиями:
1. F(0)=p(X<0)=0;
2. F(1)=p(X<1)=p0=0,117649;
3. F(2)=p(X<2)=p0+p1=0,420175;
4. F(3)=p(X<3)=p0+p1+p2=0,74431;
5. F(4)=p(X<4)=p0+p1+p2+p3=0,92953;
6. F(5)=p(X<5)=p0+p1+p2+p3+p4=0,989065;
7. F(6)=p(X<6)=p0+p1+p2+p3+p4+p5=0,999271;
8. F(x>6)=p0+p1+p2+p3+p4+p5+p6=1.
По этим данным можно построить график функции распределения.
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12
Объяснение:
Объяснение:
Мы находимся в условиях "испытаний Бернулли". Случайная величина Х - число возвращённых пар обуви - может принимать значения от 0 до 6. Найдём соответствующие вероятности [символом C(n,k)] обозначено число сочетаний из n по k]:
p0=(1-0,3)⁶=0,117649;
p1=C(6,1)*(1-0,3)⁵*(0,3)¹=0,302526;
p2=C(6,2)*(1-0,3)⁴*(0,3)²=0,324135;
p3=C(6,3)*(1-0,3)³*(0,3)³=0,18522;
p4=C(6,4)*(1-0,3)²*(0,3)⁴=0,059535;
p5=C(6,5)*(1-0,3)¹*(0,3)⁵=0,010206;
p6=(0,3)⁶=0,000729
Проверка: p0+p1+p2+p3+p4+p5+p6=1 - значит, вероятности найдены верно. Составляем ряд распределения случайной величины Х:
xi 0 1 2 3 4 5 6
pi 0,117649 0,302526 0,324135 0,18522 0,059535 0,010206 0,000729
Математическое ожидание M[X]=∑xi*pi=1,8
Дисперсия D[X]=∑(xi-M[X])²*pi=1,26
Среднее квадратическое отклонение σ[X]=√D[X]≈1,12
Функция распределения F(x) задаётся условиями:
1. F(0)=p(X<0)=0;
2. F(1)=p(X<1)=p0=0,117649;
3. F(2)=p(X<2)=p0+p1=0,420175;
4. F(3)=p(X<3)=p0+p1+p2=0,74431;
5. F(4)=p(X<4)=p0+p1+p2+p3=0,92953;
6. F(5)=p(X<5)=p0+p1+p2+p3+p4=0,989065;
7. F(6)=p(X<6)=p0+p1+p2+p3+p4+p5=0,999271;
8. F(x>6)=p0+p1+p2+p3+p4+p5+p6=1.
По этим данным можно построить график функции распределения.