Мое любимое время года весна. Я люблю весну, потому что весной природа оживает. Просыпаются после долгой и суровой зимы лесные звери, набухают почки на деревьях, чтобы совсем скоро распуститься зеленой листвой. Мне кажется, что весна это самое прекрасное время года. Она показывает, что даже после самых тяжелых времен, когда кажется, что никогда не наступит тепло, приходит весенняя пора. Весна неповторима, никогда птицы и звери так не радуются лучам солнца. Несомненно, что и человек не может не попасть под очарование этой прекрасной поры, когда цветут сады, наполняя все вокруг нежным ароматом цветов. Вот поэтому я называю весну моей любимой порой года.
Доказать, что — прямая пропорциональность. ---------- От нас требуется доказать, что — прямая пропорциональность, то есть доказать, что в выражении находится в первой степени (не , не , не и не , а просто ). Рассмотрим данное выражение . Если внимательно посмотреть это выражение можно видоизменить по формулам сокращенного умножения, а именно по формуле «разность квадратов». Действительно, данное выражение имеет вид , где , и . Формула «разность квадратов» раскрывается так: . Раскроем наше выражение по формуле:
Упростим: . Итак, получается, что , находится в первой степени, а значит зависимость — есть прямая пропорциональность. Доказано.
Мое любимое время года весна. Я люблю весну, потому что весной природа оживает. Просыпаются после долгой и суровой зимы лесные звери, набухают почки на деревьях, чтобы совсем скоро распуститься зеленой листвой. Мне кажется, что весна это самое прекрасное время года. Она показывает, что даже после самых тяжелых времен, когда кажется, что никогда не наступит тепло, приходит весенняя пора. Весна неповторима, никогда птицы и звери так не радуются лучам солнца. Несомненно, что и человек не может не попасть под очарование этой прекрасной поры, когда цветут сады, наполняя все вокруг нежным ароматом цветов. Вот поэтому я называю весну моей любимой порой года.
Доказать, что — прямая пропорциональность.
----------
От нас требуется доказать, что — прямая пропорциональность, то есть доказать, что в выражении находится в первой степени (не , не , не и не , а просто ).
Рассмотрим данное выражение . Если внимательно посмотреть это выражение можно видоизменить по формулам сокращенного умножения, а именно по формуле «разность квадратов». Действительно, данное выражение имеет вид , где , и . Формула «разность квадратов» раскрывается так: .
Раскроем наше выражение по формуле:
Упростим:
.
Итак, получается, что , находится в первой степени, а значит зависимость — есть прямая пропорциональность. Доказано.