а) 180-90=90° (угол 1 + угол 2)
пусть угол 2 = х, тогда 1 = 2х
2х+х = 90; 3х=90
х=30° (угол 2)
2х= 30*2 = 60° (угол 1)
б) равнобедренный ∆,
значит угол 2 тоже = 70°
угол 1 = 180-70-70= 40°
в) равнобедренный ∆,
значит угол 1 = углу 2 = (180-90):2 = 45°
г) угол, смежный с углом в 150° = 180-150=30°
Значит угол 1 + угол 2 = 180-30 = 150°
Пусть угол 1 = х, тогда угол 2 = х+10
х+х+10= 150°; 2х+10 = 150°
х= 70° (угол 1)
х+10 = 70+10 = 80° (угол 2)
д) Угол, смежный с углом в 110° = 180-110=70°
∆ равнобедренный,
значит угол 1 = 70°
угол 2= 180-70-70 = 40°
е) Угол, смежный с углом в 40° = 180-40= 140°
Значит угол 1 + угол 2 = 180-140 = 40°
Угол 1= 5х, угол 2 = 3х
5х+3х= 40°; 8х= 40°
х=5
5х= 25° (угол 1)
3х= 15° (угол 2)
у=х-4 и y=x+3, графики этих функций параллельны, а система этих уравнений не имеет решений.
Объяснение:
К данному уравнению x−y=4 выбери из предложенных уравнений второе уравнение так, чтобы полученная система не имела решений:
ответ (можно получить, используя построение):
2x−y=5
y+x=−4
y=x+3
Можно не использовать построение, а ответ получить, опираясь на знания)
Для начала все уравнения запишем в виде уравнений функций:
x−y=4 2x−y=5 y+x=−4 y=x+3
-у=4-х -у=5-2х у= -4-х
у=х-4 у=2х-5 у= -х-4
Известно, что система не имеет решений, если графики функций, выраженных этими уравнениями, параллельны.
Известно также, что графики линейных функций параллельны при одинаковых коэффициентах при х.
Смотрим на коэффициенты при х.
а) 180-90=90° (угол 1 + угол 2)
пусть угол 2 = х, тогда 1 = 2х
2х+х = 90; 3х=90
х=30° (угол 2)
2х= 30*2 = 60° (угол 1)
б) равнобедренный ∆,
значит угол 2 тоже = 70°
угол 1 = 180-70-70= 40°
в) равнобедренный ∆,
значит угол 1 = углу 2 = (180-90):2 = 45°
г) угол, смежный с углом в 150° = 180-150=30°
Значит угол 1 + угол 2 = 180-30 = 150°
Пусть угол 1 = х, тогда угол 2 = х+10
х+х+10= 150°; 2х+10 = 150°
х= 70° (угол 1)
х+10 = 70+10 = 80° (угол 2)
д) Угол, смежный с углом в 110° = 180-110=70°
∆ равнобедренный,
значит угол 1 = 70°
угол 2= 180-70-70 = 40°
е) Угол, смежный с углом в 40° = 180-40= 140°
Значит угол 1 + угол 2 = 180-140 = 40°
Угол 1= 5х, угол 2 = 3х
5х+3х= 40°; 8х= 40°
х=5
5х= 25° (угол 1)
3х= 15° (угол 2)
у=х-4 и y=x+3, графики этих функций параллельны, а система этих уравнений не имеет решений.
Объяснение:
К данному уравнению x−y=4 выбери из предложенных уравнений второе уравнение так, чтобы полученная система не имела решений:
ответ (можно получить, используя построение):
2x−y=5
y+x=−4
y=x+3
Можно не использовать построение, а ответ получить, опираясь на знания)
Для начала все уравнения запишем в виде уравнений функций:
x−y=4 2x−y=5 y+x=−4 y=x+3
-у=4-х -у=5-2х у= -4-х
у=х-4 у=2х-5 у= -х-4
Известно, что система не имеет решений, если графики функций, выраженных этими уравнениями, параллельны.
Известно также, что графики линейных функций параллельны при одинаковых коэффициентах при х.
Смотрим на коэффициенты при х.
у=х-4 и y=x+3, графики этих функций параллельны, а система этих уравнений не имеет решений.