Учитывая функцию y = x2 - 3x + 4. а) Найдите значения функции. б) Если известно, что график функции проходит через точку (k; 8), найти k. ответы:
а) y (x) = 0; y (-5) = 40 c) k = 4; К = -2 а) у (х) = 0; y (-5) = 44 c) k = 4; К = -1 а) у (х) = 1; y (-5) = 44 B) K = 4; К = -2
График построен
Объяснение:
y = -x² + 2x + 8 - это парабола, ветви которой направлены вниз (a < 0).
Найдём вершину:
x = - 2 / (2 * (-1)) = 1
y = -1² + 2*1 + 8 = -1 + 2 + 8 = 9
Итак, вершина: (1; 9).
По т-ме Виета корни уравнения x² + 2x + 8: x₁ = -2, x₂ = 4. Эти точки - точки пересечения графика с осью ОХ.
С вершины т.(1; 9) проводим ветви вниз, которые пересекут ось ОХ в точках (-2; 0) и (4; 0).
На фото:
т. С(1; 9) - вершина;
т. D(0; 8) - точка пересечения графика с осью ОY;
т. А(-2; 0) и т.В(4; 0) - точки пересечения графика с осью ОХ.
1) Если x₀=y₀, то |x₀|=1/2=|y₀|, откуда а=1/2. Из неравенства
|x+y|≤|x|+|y|≤√(2(x²+y²)) верного для всех х,у при а=1/2 получаем
2-|x|-|у|≤|x|+|y|≤1, т.е. |x|+|y|=1. Подставляя это во второе уравнение системы, получим 4 точки, из которых подходят только две: (1/2;1/2) и (-1/2;-1/2). Т.е. при а=1/2 система действительно имеет только 2 решения.
2) Если x₀=-y₀, то |x₀|=1=|y₀|, откуда а=2. Из неравенства
2|x|=|(x+y)+х+(-у)|≤|x+у|+|x|+|y|=2, следует что |x|≤1 и аналогично |y|≤1, а значит x²+y²=2 может быть только если |x|=1 и |y|=1. Из 4 точек подходят только две (-1;1) и (1;-1), значит при а=2 система тоже имеет только 2 решения. Итак, ответ: а∈{1/2; 2}.