Y= -3 общее уравнение прямой выглядит у=кх+в к - угловой коэффициент прямой — коэффициент в уравнении прямой на координатной плоскости, он численно равен тангенсу угла (составляющего наименьший поворот от оси Ox к оси Оу) между положительным направлением оси абсцисс и данной прямой линией.в данном случае прямая параллельна оси Ох, то есть угол ее наклона к оси Ох = 0,так как tg 0=0, то к=0 и уравнение будет выглядеть так:у=0х+в, или у=впостоянную "в" находим, подставляя в данное уравнение координаты известной точкипрямой х=-2 y=-3 -3= 0*(-2)+b b=-3 Значит, окончательно, уравнение прямой проходящей через точку ( -2 ; -3) параллельно оси Ох будет выглядеть так: у=-3
Метод подстановки. Если есть система, например, х + y = 10 xy = 1. То можно выразить х или у. Из первого уравнения x = 10 - y, выразили х, при этом у перенесли с обратным знаком направо. Теперь вместо х во втором уравнении подставляем его выражение: xy = 1 => (10 - y)y = 1, -1 + 10y + y^2 = 0. Не очень удачное, но квадратное уравнение. Принцип: выразить одно через другое, и это одно везде заменить его выражением.
Сложение. Например, дана система, ax + by = A cx - dy = B. Здесь буквы, кроме х и у, это просто некоторые числа, абстрактно. И если вот таким образом: ax+cx + by - dy = A + B (к первому уравнению прибавили второе) cx - dy = B, (второе остаётся без изменения) из первого уравнения сразу выражается какая-нибудь переменная как число, то потом во второе подставляется вместо этой переменной число. Возможно, таких сложений надо будет сделать несколько. Возможно, будет лучше ко второму прибавлять первое, тогда без изменений останется первое.
общее уравнение прямой выглядит у=кх+в
к - угловой коэффициент прямой — коэффициент в уравнении прямой на координатной плоскости, он численно равен тангенсу угла (составляющего наименьший поворот от оси Ox к оси Оу) между положительным направлением оси абсцисс и данной прямой линией.в данном случае прямая параллельна оси Ох, то есть угол ее наклона к оси Ох = 0,так как tg 0=0, то к=0 и уравнение будет выглядеть так:у=0х+в, или у=впостоянную "в" находим, подставляя в данное уравнение координаты известной точкипрямой х=-2 y=-3
-3= 0*(-2)+b
b=-3
Значит, окончательно, уравнение прямой проходящей через точку ( -2 ; -3)
параллельно оси Ох будет выглядеть так:
у=-3
Если есть система, например,
х + y = 10
xy = 1.
То можно выразить х или у. Из первого уравнения x = 10 - y, выразили х, при этом у перенесли с обратным знаком направо. Теперь вместо х во втором уравнении подставляем его выражение:
xy = 1 => (10 - y)y = 1, -1 + 10y + y^2 = 0. Не очень удачное, но квадратное уравнение.
Принцип: выразить одно через другое, и это одно везде заменить его выражением.
Сложение.
Например, дана система,
ax + by = A
cx - dy = B.
Здесь буквы, кроме х и у, это просто некоторые числа, абстрактно.
И если вот таким образом:
ax+cx + by - dy = A + B (к первому уравнению прибавили второе)
cx - dy = B, (второе остаётся без изменения)
из первого уравнения сразу выражается какая-нибудь переменная как число, то потом во второе подставляется вместо этой переменной число. Возможно, таких сложений надо будет сделать несколько. Возможно, будет лучше ко второму прибавлять первое, тогда без изменений останется первое.