Алгебра. Найдите сумму корней квадратного уравнения x^2-13x-7=0 Первый По теореме Виета В уравнении вида x²+px+q=0 сумма корней равна х₁+х₂=-р произведение корней равно х₁*х₂=q Отсюда х₁+ х₂=13 Второй не рациональный, верный, но трудоемкий) Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле Д=в²-4ас=(-13)²-4*1*(-7)=169+28=197 Корни квадратного уравнения определим по формуле х₁=-в+√Д/2а=13+√197/2*1=13+√197/2 х₂=-в-√Д/2а=13-√197/2*1=13-√197/2
Первый
По теореме Виета
В уравнении вида x²+px+q=0
сумма корней равна х₁+х₂=-р
произведение корней равно х₁*х₂=q
Отсюда х₁+ х₂=13
Второй не рациональный, верный, но трудоемкий)
Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле
Д=в²-4ас=(-13)²-4*1*(-7)=169+28=197
Корни квадратного уравнения определим по формуле
х₁=-в+√Д/2а=13+√197/2*1=13+√197/2
х₂=-в-√Д/2а=13-√197/2*1=13-√197/2
х₁+ х₂=(13+√197)/2+(13-√197)/2=(13+√197+13-√197)/2=26/2=13
Удачи!