Пусть случайная величина Х - величина выигрыша.Очевидно, что при покупке 1 билета она принимает 3 значения: 0 рублей,100 рублей и 200 рублей. Вероятность выиграть 200 рублей Р(200) =1/1000, вероятность выиграть 100 рублей равна Р(100)=1/100. Вероятность выиграть 0 рублей Р(0)=989/1000. Проверка: 1/1000+1/100+989/1000=1, так что все вероятности найдены верно. Теперь можно составить закон распределения данной дискретной случайной величины:
Xi 0 100 200
Pi 0,989 0,01 0,001
2tg^2(x) + tgx - 3 = 0
D = 1 + 24 = 25
tgx = -1.5, x = -arctg(1.5) + πk, k∈Z
tgx = 1, x = π/4 + πk, k∈Z
Найдем корни x1, x2, которые принадлежат интервалу (0;π)
0 < -arctg(1.5) + πk < π
arctg(1.5)/π < k < 1 + (arctg(1.5)/π), k∈Z
k = 1, x1 = -arctg(1.5) + π
0 < π/4 + πk < π
-0.25 < k < 0.75, k∈Z
k = 0, x2 = π/4
Найдем теперь 5tg(x1+x2) = 5tg(π/4 + π - arctg(1.5)) = 5tg(π/4 - arctg(1.5)) = 5*(tg(π/4) -tg(arctg(1.5))/(1 + tg(π/4)*tg(arctg(1.5))) = 5*(1 - 1.5)/(1 + 1.5) = -5*0.5/2.5 = -1