Поскольку треугольник равнобедренный, то две стороны у него равны АВ=ВС. Пусть длина стороны АВ=х, длина стороны АС=у. Тогда периметр треугольника Р=х+х+у или 2х+у=48. Учитывая условие существования треугольника (сумма длин двух любых сторон больше длины третьей стороны), мы также получаем два неравенства 2х>у и х+у>х. Отсюда мы получаем множество решений, где длина основания треугольника может быть больше 0, но меньше 24, а длина бедра от 12 до 24 (не включая граничные значения)
Но я думаю, что какое-то условие Вы нам не дописали. :)
0<у<24, 12<х<24, где х=АВ=ВС, у=АС
Объяснение:
Поскольку треугольник равнобедренный, то две стороны у него равны АВ=ВС. Пусть длина стороны АВ=х, длина стороны АС=у. Тогда периметр треугольника Р=х+х+у или 2х+у=48. Учитывая условие существования треугольника (сумма длин двух любых сторон больше длины третьей стороны), мы также получаем два неравенства 2х>у и х+у>х. Отсюда мы получаем множество решений, где длина основания треугольника может быть больше 0, но меньше 24, а длина бедра от 12 до 24 (не включая граничные значения)
Но я думаю, что какое-то условие Вы нам не дописали. :)
ответ:
объяснение:
интуиция мне подсказывает, что требуетс это:
1/(6а-4b) - 1/(6a+4b) + 3a/(9a^2 - 4b^2)
т. к.
6a-4b = 2*(3a-2b)
6a+4b = 2*(3a+2b)
9a^2 - 4b^2 = (3a-2b)(3a+2b) - разность квадратов
то общим знаменателем дроби будет 2(3a-2b)(3a+2b)
в числителе дроби будет:
2(3a+2b) + 2(3a-2b) + 2*3a = 6a + 4b + 6a - 4b + 6a = 18a
дробь окончательно:
18a/2(3a-2b)(3a+2b) = 9a/(9a^2 - 4b^2)
ответ:
9а
9a^2 - 4b^2