Изначально нужно сделать выбор 4 из 16 учеников без учета порядка, так как в конченом итоге они все окажутся в команде.
Теперь рассмотрим пожелания и внесем коррективы в этот выбор.
1) "Хулигана Васю брать точно нельзя"
Это означает, что выбирать мы теперь будем не из 16, а из 15 человек.
2) "Лучший геометр в параллели - Петя - однозначно будет в команде"
Это означает, что нам нужно выбрать не 4, а 3 человек, а также выбирать мы будем не из 15, а из 14 человек.
3) "А близняшек Аню и Таню нельзя разлучать ни в коем случае"
Рассмотрим две ситуации.
Первая ситуация. Аня и Таня попали в команду. Тогда, так как в команде точно есть еще и Петя, в ней осталось всего одно свободное место. Незадействованных учеников осталось 12 и любого из них можно добрать в команду. Таким образом, в этом случае мы имеем 12 вариантов.
Вторая ситуация. Аня и Таня не попали в команду. Тогда, в команде есть три свободных места, которые нужно заполнить, выбирая из оставшихся 12 учеников. Чтобы определить число это сделать, нужно посчитать число сочетаний из 12 по 3:
Таким образом, в этом случае мы имеем 220 вариантов.
Но так как первая и вторая ситуация несовместны (Аня и Таня не могут одновременно быть и не быть в команде), то полученные количества вариантов нужно сложить. Итого, число собрать команду:
Изначально нужно сделать выбор 4 из 16 учеников без учета порядка, так как в конченом итоге они все окажутся в команде.
Теперь рассмотрим пожелания и внесем коррективы в этот выбор.
1) "Хулигана Васю брать точно нельзя"
Это означает, что выбирать мы теперь будем не из 16, а из 15 человек.
2) "Лучший геометр в параллели - Петя - однозначно будет в команде"
Это означает, что нам нужно выбрать не 4, а 3 человек, а также выбирать мы будем не из 15, а из 14 человек.
3) "А близняшек Аню и Таню нельзя разлучать ни в коем случае"
Рассмотрим две ситуации.
Первая ситуация. Аня и Таня попали в команду. Тогда, так как в команде точно есть еще и Петя, в ней осталось всего одно свободное место. Незадействованных учеников осталось 12 и любого из них можно добрать в команду. Таким образом, в этом случае мы имеем 12 вариантов.
Вторая ситуация. Аня и Таня не попали в команду. Тогда, в команде есть три свободных места, которые нужно заполнить, выбирая из оставшихся 12 учеников. Чтобы определить число это сделать, нужно посчитать число сочетаний из 12 по 3:
Таким образом, в этом случае мы имеем 220 вариантов.
Но так как первая и вторая ситуация несовместны (Аня и Таня не могут одновременно быть и не быть в команде), то полученные количества вариантов нужно сложить. Итого, число собрать команду:
ответ
То 2 фирма производит х+( х*10):100 (это записывается дробью)
А 3 фирма х+( х*10):100-100.
Всего производится 236 компьютеров
решение
х+ х+( х*10):100 + (х+( х*10):100-100 )=236
приводим к общему знаменателю 100 и получается
100х+100х+10х+100х+100х+10х-10000=23600
420х=23600+10000
420х=33600
х=33600:420
х=80 (комп)-производит 1 фирма
80+(80*10):100=88 (комп) производит 2 фирма
( 80+88 )-100=68 (комп)производит 3 фирма
и того проверка :80+88+68=236 (комп)производят три фирмы.
Надеюсь,объяснила доступно