тангенс угла наклона прямой, содержащей диагональ квадрата (в условиях она проходит через данные вершины) = -1/2. угол между сторонами квадрата и диагональю - пи/4. тогда тангенсы углов наклона прямых, содержащих стороны квадрата, равны -3 и 1/3 (соответственные значения получаются применением формулы тангенса суммы к тг (пи - арктг (1/2) - пи/4) и тг (пи - арктг (1/2) + пи/ значит, уравнения прямых принимают вид у = -3х - 1 и у = (1/3)х - 1.
п. с. почему-то символы из раскладки использовать не получается, поэтому функции тангенс и арктангенс обозначены соответственно тг и арктг.
1) Складывая уравнения системы, получаем уравнение 2x²=32, откуда x²=16. Тогда из первого уравнения находим 2y²=2 и y²=1. Если x²=16, то x1=4, x2=-4 Если y²=1, то y1=1, y2=-1. Решением уравнения явлаются пары (x1;y1), (x1;y2), (x2,y1), (x2;y2). ответ: (4;1), (4;-1), (-4;1), (-4;-1)
2) Из первого уравнения находим 6/(x-y)=8/(x+y)-2. Тогда 9/(x-y)=12/(x+y)-3. Подставляя это выражение во второе уравнение, получаем 22/(x+y)=11, откуда x+y=22/11=2. Теперь из первого уравнения находим 6/(x-y)-8/2=-2, откуда 6/(x-y)=2 и x-y=6/2=3. Получили систему уравнений:
x+y=2 x-y=3.
Из первого уравнения находим y=2-x. Подставляя это выражение во второе уравнение, получаем 2x-2=3, 2x=5, x=2,5. Тогда y=-0,5. ответ: (2,5;-0,5)
ответ:
тангенс угла наклона прямой, содержащей диагональ квадрата (в условиях она проходит через данные вершины) = -1/2. угол между сторонами квадрата и диагональю - пи/4. тогда тангенсы углов наклона прямых, содержащих стороны квадрата, равны -3 и 1/3 (соответственные значения получаются применением формулы тангенса суммы к тг (пи - арктг (1/2) - пи/4) и тг (пи - арктг (1/2) + пи/ значит, уравнения прямых принимают вид у = -3х - 1 и у = (1/3)х - 1.
п. с. почему-то символы из раскладки использовать не получается, поэтому функции тангенс и арктангенс обозначены соответственно тг и арктг.
объяснение:
ответ: (4;1), (4;-1), (-4;1), (-4;-1)
2) Из первого уравнения находим 6/(x-y)=8/(x+y)-2. Тогда 9/(x-y)=12/(x+y)-3. Подставляя это выражение во второе уравнение, получаем 22/(x+y)=11, откуда x+y=22/11=2. Теперь из первого уравнения находим 6/(x-y)-8/2=-2, откуда 6/(x-y)=2 и x-y=6/2=3. Получили систему уравнений:
x+y=2
x-y=3.
Из первого уравнения находим y=2-x. Подставляя это выражение во второе уравнение, получаем 2x-2=3, 2x=5, x=2,5. Тогда y=-0,5.
ответ: (2,5;-0,5)